
Department of Mathematics and Information Sciences
University of North Texas at Dallas

Dallas - Texas

College Class Scheduler

IT Capstone I

Carol Every

Cristian Chavez

Dylan Park

Viviana Hernandez

Supervisor:

Dr. Saif Al-Sultan

April 27, 2021

Abstract

Our proposed college class scheduler is designed to assist faculty in helping students schedule their future

college courses. Course, degree plan and student information can be entered into the application. From

information input the system is able to generate a report. This report will show users what classes have

been completed and what classes are still required to complete a particular degree. The application will

be able to provide this report by utilizing a database that is capable of holding a repository of all degree

plans- combined with previous student information in order to deduce what courses the student still has to

complete. The system will be developed in Java and use a MySQL database management system. The team

will follow Scrum method of development.

Contents

1 Introduction 8

1.1 Introduction . 9

1.2 Problem Definition . 9

1.3 Motivation . 9

1.4 Project Outline . 10

1.4.1 Chapters Organization . 10

2 Literature Review 11

2.1 Introduction . 12

2.2 Related Work . 12

2.2.1 Ellucian Degree Works . 12

2.2.2 Conclusive Systems Advisor . 13

2.2.3 Texas Common Course Numbering System . 14

2.2.4 eConnect through Dallas College (formerly Dallas County Community College) 14

2.2.5 CAESked: A Class Scheduler for WMU Students . 15

2.2.6 Software Requirements Specification of A University Class Scheduler 16

2.2.7 CyberMatrix . 16

2.2.8 UniTime . 17

2.3 Software Development . 18

2.4 The Process Model Used In This Project . 19

2.5 Software Implementation Tools . 20

2.5.1 Programming Languages . 20

2.5.2 Database Management Systems . 25

1

2.5.3 UML Language . 27

2.6 Summary . 35

3 Requirement Specification and System Modeling 36

3.1 Introduction . 37

3.2 Requirement Engineering Process . 37

3.2.1 Elicitation . 37

3.2.2 Analysis . 38

3.2.3 Defining and Documenting Requirements . 38

3.2.4 Requirement Specification and Agreement . 38

3.3 Requirements Documentation . 39

3.3.1 User Requirements . 39

3.3.2 System Requirements . 39

3.4 Requirement Models . 41

3.5 Summary . 44

4 System Design 45

4.1 Introduction . 46

4.2 Database Design . 46

4.3 Graphical User Interface Design . 48

4.4 System Navigation . 58

4.5 Summary . 60

5 Implementation and Testing 61

5.1 Introduction . 62

5.2 GUI and Explanations . 62

5.3 Testing Scenarios . 69

5.4 Summary . 81

6 Conclusion and Future Work 82

6.1 Conclusion . 83

6.2 Future Work . 83

Appendices 85

2

A Paper Degree Plan Example 85

B Implementation Code 88

B.1 Login Page . 88

B.2 Main Page . 93

B.3 Student . 98

B.4 Plans . 104

B.5 Courses . 108

B.6 Plan Courses . 115

B.7 Student Courses . 120

B.8 Reports . 126

B.9 UI Class . 129

B.10 Report Data Class . 146

B.11 Connection Pool Class . 152

B.12 MySQL Database Creation Code . 153

3

List of Figures

2.1 Composite Structure Diagram . 28

2.2 Class Diagram. 29

2.3 Object Diagram. 30

2.4 Component Diagram. 30

2.5 State Machine Diagram . 31

2.6 Use Case Diagram. 32

2.7 Sequence Diagram. 33

2.8 Timing Diagram . 34

2.9 Interaction Overview Diagram . 34

3.1 User Log-In Options. 41

3.2 Check Course Availability . 42

3.3 Generate Report . 43

3.4 Texas Common Courses Report . 43

3.5 Course Pass Rate Report . 43

4.1 Conceptual Model . 46

4.2 Logical Model . 47

4.3 Physical Model . 48

4.4 Log-in Page . 49

4.5 Main Page . 50

4.6 Students Page . 52

4.7 Plans Page . 53

4.8 Course Page . 55

4

4.9 Plan/Courses Page . 56

4.10 Student Courses Page . 57

4.11 Generate Report . 58

4.12 System Diagram . 59

5.1 Login Final GUI . 62

5.2 Main Final GUI . 63

5.3 Student Final GUI . 64

5.4 Plans Final GUI . 65

5.5 Courses Final GUI . 66

5.6 Plan Courses Final GUI . 67

5.7 Student Courses Final GUI . 68

5.8 Reports Final GUI . 69

5.9 Login test Incorrect password . 70

5.10 Main Page Functionally Test . 71

5.11 Students Page Functionally Test . 72

5.12 Plans Page Functionally Test . 72

5.13 Courses Page Functionally Test . 73

5.14 Courses Page Drop Down List Test . 73

5.15 Plan Courses Functionally Test . 74

5.16 Student Courses Functionally Test . 74

5.17 Reports Page Functionally Test . 75

5.18 Reports Page Functionally Test . 75

5.19 Signout Functionally Test . 76

5.20 Data saved to MySQL Database Functionally Test . 76

5.21 Grading system course required. 77

5.22 Major course remains on list until grade of C or higher.. 77

5.23 Major course removed from list after passing grade. 78

5.24 Screen Resize Presentation Test . 79

5.25 Screen Resize Presentation Test . 79

5.26 Field Selection Color Change Test . 80

5.27 Grayscale Presentation Test . 80

5

Acronyms

ACGM Academic Course Guide Manual

CGI Common Gateway Interface

CSS Cascading Style Sheets

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IT Information Technology

JS JavaScript

JVM Java Virtual Machine

MSSQL Microsoft Structured Query Language

MVC Model-View-Controller

MySQL My Structured Query Language

NCSA National Center for Supercomputing Applications

ODBC Open Database Connection standard

OMG Object Management Group

PHP PHP: Hypertext Preprocessor

RDBMS Relational Database Management System

REST Representational State Transfer

TCCNS Texas Common Course Numbering System

UML Unified Modeling Language

UNTD University of North Texas at Dallas

W3C World Wide Web Consortium

6

WMU Western Michigan University

WWW World Wide Web

7

Chapter 1

Introduction

Objectives:

� Provides an introduction to the background for our proposed system.

� Outlines and defines the need for our proposed system.

� Explains the time frame for each part of our development cycle.

8

1.1 Introduction

This chapter will explain our problem statement and the motivation behind the development of our software

design. It will illustrate project outline, which will clearly guide and state what our system will need to

succeed.

1.2 Problem Definition

Our goal in developing this degree planning application is to create a practical and relevant tool that can

be used to provide convenient reference notes for student advising. Our target audience for the software

includes faculty members. Currently, degree plans are produced and dispersed as paper documents and

images (Appendix ref4YearPlan). The purpose of our proposed system is to produce informative degree

progression status for each student in a digital format. This application is not meant to be a substitute

for advising. Instead, the intent is to provide a quickly accessible overview of how many courses have been

completed in a degree plan and how many courses are still required. Data generated from this digital

information provides factual talking points for faculty, students, and advisers as they select the best courses

each semester until graduation.

1.3 Motivation

Our motivation for developing this system is to be able to provide a solution for the issues that students are

having with scheduling classes. The proposed system will help automate the process of scheduling classes

and help students generate their upcoming schedule and for faculty to maintain up-to-date degree audits.

This system is intended for the use of students and faculty at the University of North Texas at Dallas. We

also intend to make it as simple as possible for ease of use. The system would give the users suggestions for

how to build their schedule as well as distinguishing classes that would best suit the user.

9

1.4 Project Outline

The following describes the proposed outline of the project.

1.4.1 Chapters Organization

� Chapter 1: (Introduction) This chapter introduces the original context to the system and provides

an outline for the project.

� Chapter 2: (Literature Review)

This chapter provides reference and reading for background information on related systems and tech-

nologies.

� Chapter 3: (Requirement Specification and System Modeling)

This chapter defines the Requirement Engineering Process for our system and lists its system and user

requirements.

� Chapter 4: (Design) This chapter shows the general Graphical User Interface (GUI) and database

design for our system, and explains the system navigation.

� Chapter 5: (Implimentation and Testing) This chapter will show the code for our system, and

will show tests for our system, as well as their results.

� Chapter 6: (Conclusion and Future Work) A conclusion of the proposed system will be given in

this chapter. In addition, this chapter will present the possible directions of the future work.

10

Chapter 2

Literature Review

Objectives:

� Provide examples of related systems that provide similar functionality to our own system.

� Define different types of software development and explain which one we will use to develop our system.

� Define different possible programming languages and database systems that were possible to use in

this system.

� Define Unified Modeling Language (UML) and provide examples of different types of models we could

use in our system.

11

2.1 Introduction

Proper selection of tools to be utilized in software design solutions can greatly enhance the quality of the

product. Choosing the correct tools for tasks also affects the ease with which that product is produced. In

this chapter, first we present a general overview of similar software applications and useful features available

to solve some issues we are addressing. From this overview, we will focus on features relevant to our proposed

application. This overview will also help determine the uniqueness of our proposed system and its features.

Next we cover some common and useful tools available for planning, designing and implementing software

systems. The goal of this comparative overview and available tools research is to create a framework that

guides our software development process. Among the tools covered are various software development models,

programming languages, database management systems and unified modeling languages.

2.2 Related Work

This section introduces the work that has been done in this area, It will show example software similar to

the system we are proposing. The following paragraphs will explain these systems in detail.

2.2.1 Ellucian Degree Works

Ellucian Degree Works is a computerized set of academic planning tools designed to provide college advisors

and students with near real time data for degree completion planning [1]. The software allows students to

quickly view degree goals that are “ontrack” and “offtrack”. Degree Works client campuses range between

3,000 to 15,000 students. These can be 2-year Public Institutions, 4-year Private or Public Institutions.

Degree Works is website portal based software accessible by Android, iOS devices, tablet, PC or Mac with

an internet connection. Users need skills in Scribe, Surecode, Transit, Shepentry and SQL.

Features

� Determine what requirements you need to fulfill to complete your degree.

� View individual course grades, cumulative grade-point average (GPA), and major average.

� Determine which courses you have taken or transferred, and which ones count as electives

� View transfer credits, waivers, and exemptions applied toward your degree.

12

� See how your coursework can be applied toward another major, minor, certificate or major concentra-

tion using the ‘What If’ option.

� Estimate how many semesters it will take you to graduate.

� Learn the prerequisites for courses by clicking on the course number

� Look Ahead - a planning tool that allows you to see a degree audit showing courses for which you plan

to register in future semesters, a list of “Courses you are considering”

� Easily document advising notes

� Provide an Athletics Eligibility auxiliary audit

� Provide a Financial Aid auxiliary audit.

2.2.2 Conclusive Systems Advisor

Conclusive Systems Advisor is managed by the vendor with upfront pricing. This online degree audit system

cost 4 to 10 times less than Degree Works [2]. The vendor handles updates, patches and backups. Advisor

runs on a proprietary programming language and has a point-and-click interface for users. Its online web

portal can be accessed by Android, iOS devices, tablet, PC or Mac with an internet connection.

Features

� Entirely Web-Based...

� Wholly-Managed Systems

� Academic Planning/Scheduling

� What-If Scenarios

� Company ’Features’ Matter Too

� Financial-Aid Report

� Grad-Checks

� Document Management Integration

13

2.2.3 Texas Common Course Numbering System

Texas Common Course Numbering System (TCCNS) is an online system that was designed to facilitate the

transfer of general academic courses among Texas public institutions [3]. It allows the user to verify lower-

division course compatibility with over 130 higher learning institutions in the state of Texas. With this,

the user can cross-reference any Texas Common course with any higher education institution to confirm the

compatible courses. The home page offers three different selections to traverse through the common course

matrix. The users can cross-reference compatibility by selecting the following: Search by School, Compare

Schools, or Search by Course.

When selecting the option to Compare Schools, the user can select two institutions at a time which

allows the user to verify against the entire common course matrix. The first column reflects the number

type and the title of the course. The TCCNS courses are identified by a four-character course prefix which

represent the course type or academic discipline, followed by a four-digit course number. All prefix/number

combinations correspond to the course descriptions listed in the Academic Course Guide Manual known as

Academic Course Guide Manual (ACGM) which is published by the Texas Higher Education Coordinating

Board. All TCCCN courses are listed in alphabetical order and listed side by side, which is a well laid out

visual hierarchy. On the Homepage, under the Download Matrix, TCCNS provides the ability to download

the matrix for the current and prior years as a single Excel document if they so desire.

The functionality of the system works well. The system does provide the user with the course description,

as the system was designed to do. The only drawback is that the user must scroll down a list that contains

over three hundred and fifty courses to find the desired one. One way its efficiency could be improved is by

having tabs that expand or collapse which would allow the user to click on a course based on alphabetical

or course number.

2.2.4 eConnect through Dallas College (formerly Dallas County Community

College)

eConnect through Dallas College is a web interface that provides a variety of online services which include My

Program of Study [4]. Program of Study is all course of study, requirements that a student must successfully

complete to confer a degree, diploma, or certificate from the University. With this, the user has the option to

explore, select/change, or view/print their program of study. Once logged into eConnect, under My Program

of Study, the user explores which degree or certificate best fits them.

14

After the user gains access to My Program of Study, they are prompted to select an active program

of study that they wish to view. Within a few minutes, the system automatically builds a personalized

program of study based on the selection. The user also has the option to choose/change their Program of

Study. The user is allowed to review as many programs as they see fit. The system requires the user to

select a catalog year before proceeding. After a few minutes, the report generated is tailored to the user

specific requirements.

eConnect is how we would desire our proposed application to function. This system will have some

similarities to our proposed software, primarily with regards to the functionality of identifying and generating

the required courses. The primary differentiating factor of our system is that it will strive to show relevant

class options to meet requirements. With the option to allow/inform the students of other college equivalent

TCCNS compatible courses regardless of where they are offered.

2.2.5 CAESked: A Class Scheduler for WMU Students

This project was developed by Chris Fruin and Jerry Grochowski at Western Michigan University in 2010 for

their senior project. While it is similar in many ways to our project, some differences are this software is more

focused on building class schedules for a singular semester, whereas our project focuses more on tracking

degree requirements throughout the courses an Information Technology (IT) undergrad takes to become a

graduate. Another difference is that this scheduler is made for Western Michigan University (WMU) Students

specifically where our program would be specified towards University of North Texas at Dallas (UNTD)

students. All that being said, there are some important similarities between the two projects that can be

useful to our project.

The software (referred to as CAESked from here on out) is designed to help a student build a semester’s

class schedule by choosing the most optimal available times for each class the student wants to take [5]. A

student can easily add the classes they need to take, and the classes are added to a graphical display of the

week. Using this graph, the student can then make educated choices on the most optimal class times/days

to choose. It is not able to see a student’s previous classes or judge requirements (something our project

is aiming to handle instead). CAESked also includes some extra features like the ability to see detailed

info for a selected class and even has a map of campus that highlights the location of any one class. The

documentation papers state CAESked uses PHP: Hypertext Preprocessor (PHP) and JavaScript and is a

web application. It directly integrates data from the school to keep itself up to date, and it is accessible

through its own website.

15

The similarities between CAESked and ours gives me a good idea of the type of data we will need to

process, as well as the data we will need to store. In order to keep track of any student’s completed classes,

we will need a database of all current classes, as well as their requirements. We can do this by hand, but

the most optimal way would technically be through some API or similar web scraping that keeps up with

changing course requirements and other changes. Despite this being a scheduler and handling a different

part of the class registration process, a lot of the work that was done at the very least stands as a good

example and inspiration for ways to handle similar issues in our project

2.2.6 Software Requirements Specification of A University Class Scheduler

This paper was written by Deanna Needell, Jeff Stuart, Tamara Thiel, Sergiu Dascalu, and Frederick Harris

Jr. at the University of Nevada [6]. While it is not a paper on the fully realized project, it has class diagrams

and explanations on the design, and the project is similar enough that it can also be related back to our

idea. It is different in scope to our project, as the paper specifies a program that is more so meant to be

used by college administrators to schedule many course classes.

Despite its differences, many of the design choices made can still apply to our own course calculator. For

example, it was written in C++, a class based language. All of its data files were also stored in XML format,

which is something good to consider. A more modern option vs XML would be JSON format, but both are

good ways to store data and possibly hand it between APIs. It uses Qt for its user interface, something

slightly similar to a more advanced implementation of JavaFX. The methods in which they store class data

is probably one of the more important takeaways from this paper, having classes for different professors,

rooms, classes, etc. Using a system like that to organize classes within the program will be in our best

interest.

2.2.7 CyberMatrix

CyberMatrix is a software program which permits single or multiuser software for scholar class scheduling.

The software program’s major focus is for colleges and different instructional establishments which could

want to have fast scheduled classes. The software has many features that are made available in order to

provide a more efficient way to schedule classes that are needed for students. It has automatic scheduling

which it would take the input of what classes are needed for a student and choose from a list of possible

schedules. If they choose to do so they can also have bulk input in which generates classes that students

require to finish.

16

Another feature that can be beneficial is that it can also let you adjust the schedule manually. If the

schedules that are suggested do not seem to fit the schedule of the student they can be edited to better

suit the students schedule. The software contains a feature which will check if the student has finished the

prerequisites in order to take the following class. The search option can also narrow down the classes which

the student may be looking for. It also allows for different views which can be either viewed by class schedule,

student schedule, instructor schedule, and as well as classroom schedule.

A feature that seemed interesting is that it also has multi language support which can change the text

into the language equivalent which non-English speakers can understand. It has system requirements of at

least 2GB RAM and 30 MB disk space.[7].

2.2.8 UniTime

Unitime is a complete academic scheduling software that helps develop course timetables amongst different

things. Which consists of scheduling college students to individual lessons and sharing rooms with different

events. It permits more than one college and departmental agenda manager to coordinate efforts to con-

struct and alter a timetable that meets their numerous organizational desires whilst taking into account the

minimization of pupil course conflicts. The software has four different components compromised of course

time tabling and management, examination timetabling, event management, and student scheduling. Start-

ing with course timetabling its main purpose would be to place every course at a time which could now

no longer interfere with other classes that the pupil is taking. Course management coordinates efforts to

build and modify a schedule that meets their diverse organizational needs while allowing for minimization

of student course conflicts. As it does with courses it also builds complete exam schedule each term while

minimizing conflicting exam placement for students. The student scheduling procedure is the matching of

the units of classes required by every pupil to the appropriate available class spaces in order to fulfill the

various pupil academic requirements[8].

Our design differs from similar projects for multiple reasons. Primarily, the biggest difference is the fact

that this tool is being designed specifically for University of North Texas at Dallas students to be used in

conjunction with the MyUNTD system already in place. The design and focus of this application will be

degree completion. It is meant to be a tool that provides a convenient overview of courses students still

require in order to graduate.

17

2.3 Software Development

� Incremental Development Model

The Incremental Development Model also follows the waterfall model [9]. However, an incremental

model is developed in multiple cycles, but each cycle is still a subsequent release of the previous cycle.

It splits the Requirements up into system increments. Requirements are developed based on priorities.

Although the development is performed in multiple incremental cycles, the release is still a single release

like the waterfall model. When the development of an increment is started, it freezes the requirements.

We must complete every increment. After completion, they can hand it to the client for feedback.

After receiving feedback then we would start working on the following increments. The requirements

for later increments can continue to evolve.

� Scrum

Scrum is one of the modern agile models used to produce and deliver high-quality complex products

[10]. A key part of the Scrum framework is to help small teams of people work together on projects

with clearly defined components. Once roles, relationships, events, artifacts and rules are defined, the

team functions whether there is one small group or multiple small groups working together. Scrum

expands on the iterative and incremental models by leaving room for the knowledge gained as teams

work on and make decisions about the project or problems based on what is known. The idea is to

use transparency, inspection, and adaptation to continuously improve the product, the team, and the

working environment. Scrum teams have a Product owner, Development team and Scrum Master.

They also have guiding values that help teams build trust. Teams use a Sprint to plan out the work to

be completed in increments that do not exceed one month at a time. When one Sprint is completed

the next one starts. All team members must understand and mutually define what “Done” means.

� Waterfall

The Waterfall Model is a process model that utilizes a linear life cycle model, where each task leads

to the next task until you need to perform maintenance, where you can reset at the appropriate level

of the waterfall [11]. In this model, the entire team focuses on a step in the process and does not

continue until the step is done. The waterfall approach was one of the first SDLC models to be

widely used in software engineering. The steps you have to take in the waterfall model are as follows:

Requirement Gathering, System Design, Implementation, Integration and Testing, Deployment, and

18

finally Maintenance. In order to utilize the Waterfall model, your project requirements need to be well

documented, and your project should be stable. The other important factor is that the project needs

to be short, as in longer projects it is hard to judge progress within steps, and changes in requirements

cannot be made.

� Extreme Programing

Extreme programming follows the agile process that aims to produce higher quality software[12]. Ex-

treme programming is the most specific of the agile in terms of engineering practices of software

development. It was also one of the first agile methods and it was primarily dominant in the 90s and

early 00s. It is thought that XP was the most significant approach to changing software development.

XP focuses on the application of programming techniques, clear communication, and team work. In XP

requirements are expressed as scenarios which are directly implemented as a series of tasks. In which

programmers work in pairs where they make tests for each task before going forward with the code[13].

At first extreme programming was considered to be controversial due to the fact that it introduced

multiple agile practices that were different. The principals that make up extreme programming are col-

lective ownership, continuous integration, incremental planning, on-site customer, pair programming,

re-factoring, simple design, small releases, sustainable pace, and test first development. Although it is

an agile programming framework companies pick and choose which XP practices work the best with

there way of work. It is used often with scrum which is a management focused agile method[14].

2.4 The Process Model Used In This Project

The process model we will use in this project will be Scrum. We chose this model for a couple reasons.

Firstly, it is an agile model, meaning it is more modernized compared to other non agile models. It is also

geared towards smaller teams, allowing more focus on specific portions of the project through development

[10]. The development team organizes themselves, and all work together on all portions of the project. This

is imperative in a smaller group, allowing for more close relation and contact between members. The Scrum

cycle consists of different ‘Sprints’ where the team works to produce a small releasable product each month,

of which they increment into the final product. Each day of the sprint there is a ‘Daily Scrum’ where the

team meets to discuss what is and is not working, and what goals to achieve for the day. After that, the

team works for the rest of the day on their own goals. We think the Scrum model facilitates a lot of good

practices that benefit our smaller group size.

19

2.5 Software Implementation Tools

There are many different tools for developing a software. This section will go over different types of pro-

gramming languages, database management systems, and UML language.

2.5.1 Programming Languages

� HTML:

When one logs into the World Wide Web, with no regards to what type of device or browser one

is using, your device must be able to communicate. There has to be a universal language that all

these different devices using different platforms can all understand. This is where Hypertext Markup

Language (HTML) comes in to play. It is part of the foundational coding languages on the internet.

It creates the structure of a web page. It uses “tags” to markup a language, hence the name. It adds

bits of code to markup the text which communicates to the browser how to display the page. It is used

to define all the content, the text, the images, and the links. Web browsers like Firefox and Chrome

translate HTML language into visual web pages. Without a browser, this language is just words on

a page. Depending on what web browser one uses, each web browser will translate HTML slightly

different. HTML, Cascading Style Sheets (CSS) and Javascript need one another to make a modern

website. These code languages make up front-end web development.

HTML is constantly evolving, HTML was developed by Tim Berners-Lee [15]. It became more popular

after the Mosaic browser adapted it, which was developed at the National Center for Supercomputing

Applications (NCSA). Since then HTML has grown in numerous ways, but for it to work on the Web,

everyone must share the same unified protocols.

� CSS:

CSS is a part of the standards established and adopted by the World Wide Web Consortium (W3C)

[16]. When the styling language CSS is paired with Hypertext Markup Language (HTML) designers are

able to enhance the presentation style and create consistent layouts for web pages. HTML provides the

content (text) and CSS allows style options like font size, type and color, margins sizes and background

color to be easily changed. Tables can also be positioned and styled. Options like these allow web

designers to create unique and more personalized looks for websites. If a font size needs to change,

update the style sheet and all associated pages for the website will reflect the update. Changes can

20

be page or element specific. Once CSS code is completed the resulting style can be reused on multiple

pages for a current website project or slightly altered for a different look on another website.

Before CSS web pages defaulted to browser setting for font size and color. Information could be

presented online but not styled efficiently. This meant web pages were presented as text while lacking

the formatting necessary to make it easy for users to read. Because World Wide Web (WWW)

users were utilizing the internet more and more for electronic publishing, there was a need to style

web page layouts. One of the earliest goals was the ability to present web pages in the style of

newspapers–with columns. Several style sheet options were being explored in the early 1990s to solve

this problem however, CSS distinguished itself with the unique ability to cascade (“allows several

style sheets to influence the presentation of a document”). With this cascading ability change request

between designers, browsers and readers could now be accommodated. Web page readers can customize

the look of the page to suit them as they view information with a larger font or different page color.

These reader changes can be reset in the browser to the default web author settings and do not affect

how the page is displayed to other readers. Collaboration between H̊akon Wium Lie [17], Bert Bos

[18] and Tim Berners-Lee [19] helped keep CSS- browser and operating system independent. The style

sheet can be created in any text editor and this file saves with a .css extension.

Today CSS is used on most websites. CSS visual design modules have evolved through the years and

added features that accommodate the rapidly changing delivery of information on the internet. With

CSS a web page can be displayed seamlessly in various browsers like Firefox, Chrome, Edge, Safari or

Opera. Websites with CSS can be displayed on Android, Microsoft Windows, Apple Mac or iOS and

Linux systems. Websites can be responsive so that the web page displays properly regardless of device

screen size – desktop, tablet or phone. CSS Flexbox Layout Module allows web authors to create

one dimensional (row or column) of elements. While the CSS Grid Layout gives the ability to create

two-dimensional (rows and columns) of elements. New modules and integrations continue to expand

the abilities of CSS.

� JavaScript:

JavaScript (JS) is a lightweight, interpreted, prototype-based language focused on front-end web de-

velopment [20]. It runs on the client side of web technology and is used to alter the look and behavior

of web technology. In addition to websites, JavaScript can also be used in other environments like

Node.js, which is a server side environment that runs JavaScript programs in its own engine. It is

21

not to be confused with Java; while both are owned by Oracle, Java and JavaScript handle massively

different functions. JavaScript’s main functions in things like websites or web apps are usually to:

– Add or modify HTML on the page

– Add or modify CSS elements

– Handle a user’s clicks

– Perform basic operations on user inputted data

– Handle local cookie storage

When run server side, JavaScript can be useful in the generation of web pages, and handling of API

requests. For example, Node.js can be used to create a simple web server that can handle Hypertext

Transfer Protocol (HTTP) requests. These servers are known as Representational State Transfer

(REST) servers. This in turn can be used to create RESTful Web Services that can send, retrieve, and

modify data on the server. These types of services allow programmers to utilize large data sets that

other established services have already, and also can be used internally to modify data in a database

easily. By utilizing web-based technology, JavaScript remains highly compatible across many devices

and has good backwards comparability between different versions.

� Java:

Java is considered to be a High-Level language, which in essence means that it is similar to English

and easy to use. As such Java is platform-independent, which means that you can write a program

and run it on different types of machines. Although the program is written in Java it needs to be

translated for the computer to understand. Java uses a compiler often referred to as Java virtual

machine(Java Virtual Machine (JVM)). The job of JVM is to take the high-level language, which is

Java, and translate it into machine code for it to be executed[21].

Java was developed by a team led by James Gosling at Sun Microsystems in 1991. Its original name

was Oak but then was later renamed as we know it now Java in 1995. It has become extremely

popular mainly since you can write a program once and run it anywhere. ”As stated by its designer,

Java is simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable,

high performance, multithreaded,and dynamic.” Today java is also used for building stand-alone

applications across multiple platforms.[21].

22

� PHP:

Hypertext Preprocessor (PHP) is an open source, server side, general purpose scripting language.

PHP can be used on operating systems like Linux, Unix variants (HP-UX, Solaris and OpenBSD),

Microsoft Windows, macOS and Android. When installed along with web server software, like Apache

or Microsoft IIS, developers from novice to expert have a wide selection of today’s most popular

back-end tools available.

One of the most popular features of PHP is the ability to create dynamic web pages. Once installed

on a web-server PHP can be used with HTML to expand the functionally of web pages. PHP syntax

directly embedded into HTML source code easily adds features to web pages that HTML alone does

not have. These PHP-enabled web pages are created and edited like regular HTML pages. Added

features include things like collecting values from user input and converting these values to other

formats (e.g. yards to feet). Other user data inputs like address books entries, forum history and

survey responses can also be collected. PHP can then take this user’s submitted data and store it

in a database like My Structured Query Language (MySQL) [22]. Using PHP, HTML and MySQL

is a popular and inexpensive database solution for businesses. However PHP can connect to any

database that supports the Open Database Connection standard via the Open Database Connection

standard (ODBC) extension including Microsoft Structured Query Language (MSSQL), Oracle and

Sybase [23]. In addition to the above features PHP comes bundled with the GDLibrary [24]. This

library allows developers to create simple graphics or to edit existing graphics. With the PHP parser

(Common Gateway Interface (CGI) or server module), a web server and a web browser, developers can

build their web pages, view the output and make adjustments as needed.

PHP has many other features besides these. It allows developers to use procedural or object-oriented

programming or a mixture of both. Also, PHP itself can be extended to add even more features. For

example, PHP-GTK can be used by advanced developers to create client side desktop applications [22].

The abundance of features and wide compatibility with various hardware and software result in more

than 20 million websites around the global using PHP [25]. Yet the simplicity of PHP allows it to

be installed for learning purposes on a home computer in a budget friendly setup. PHP, Apache and

MySQL are all open source free software.

23

� Python:

Python is an Object-Oriented programming language developed by Guido van Rossum [26]. It is a free

and open source language, and has recently become one of the most popular data science languages.

On top of that, it is also widely used in web development. Python runs as the back-end to many web

servers and APIs. Python is very easy to develop with due to its massive and easily accessible library of

ready-made software and libraries you can implement and contribute to. This makes starting projects

very easy. The syntax for Python is very English-based and uses white space indentation. While being

similar to languages like Java and C++, it stands to be easier to both read and write. Python is

mainly an interpreted language, meaning it is not always (but sometimes is) compiled before running.

Generally, the Python interpreter you install will convert the code line by line to byte code instead

of compiling it all to machine code. This can effect run times, but it allows Python to be platform

independent, and lets you collaborate on projects across platforms.

Good Python code adheres to the Zen of Python [27]. These are suggested practices that Python

programs should follow. Some of these include:

– Beautiful is better than ugly.

– Sparse is better than dense.

– Errors should never pass silently.

– In the face of ambiguity, refuse the temptation to guess.

This list can be read from any Python compiler by calling the command: import this. While not

absolute requirements, following these rules is a good way to ensure you are thinking Pythonically,

that is thinking and writing code that follows the same general style.

� C++:

C++ is a programming language that ”is close to machine” and as well as ”close to the problem to

be solved”. What it means is that it makes it simple for the machine to handle the important aspects

that are obvious to the programmer and so the solution can be expressed concisely. C++ comes

from the programming language known as C it just has added function argument checking, consts,

classes, constructors and destructors, exceptions, and templates. With these features, C++ is based

on the idea of providing both direct mappings of built-in operations and types to hardware to provide

efficient memory use and low-level operations, and affordable and flexible abstraction mechanisms to

24

provide user-defined types with the same notational support, range of uses, and performances as built-in

types. C++ deals with fundamentals such as memory, mutability, abstraction, resource management,

algorithms, error handling, and modularity. C++ is biased toward system programming meaning it

uses hardware resources, has serious resource constraints, or closely interacts with code that does.

C++ like other modern programming languages usage has a vast range. C++ has four different

programming styles procedural, data abstraction, object-oriented, and generic. The creator of C++ is

Bjarne Stroustrup who invented it in 1979 which started as an extension of the C language.[28].

� Ruby on Rails:

Ruby on Rails also known as Rails is a software framework that is designed to support the development

of web applications. It is written in the language Ruby [29]. It follows the Model-View-Controller

(MVC) architectural pattern. The main advantage that Ruby on Rails offers over other frameworks

is that it can release cycles in a fast and simple way. The framework advocates “Conventions over

Configurations” which just means that one can get applications running without an enormous amount

of code required. Another great advantage is the meta-programming technique, which allows the use

of writing programs using programs. Another asset is that Ruby on Rails offers scaffolding. With

scaffolding, one can create temporary codes to get the application up and running, which allows one

to see how it will all come together.

The founding “fathers” of Ruby and Ruby on Rails are Yukihiro Matsumoto and David Heinemeier

Hansson [30]. Yukihiro Matsumoto is the creator of the high-level programming language from Japan,

which was first launched in 1995. David Heinemeier Hansson developed Ruby on Rails in Ruby in

2003. It was not until 2004 when Hansson released it as open-source [29].

Rails continue to develop and implement new projects. The following list contains the names of projects

that use Ruby on Rails: Airbnb, Basecamp, Couchsurfing, GitHub, Dribble, and Hulu. Ruby on Rails’

latest version is 6.0 and was released on August 16, 2019 [29].

2.5.2 Database Management Systems

� Oracle Database

Oracle Database in currently on release 19 and release 20 is currently being evaluated [31]. The

database runs on operating systems like Oracle Solaris, Microsoft Windows, Linux, IBM AIX and

HP-UX. Oracle sees the databases of the future possible in their Autonomous Database [32]. These

25

databases use cloud based technology and machine learning to automate routine database management

tasks like updates, security, and repairs. They are called self-driving databases. Some other editions of

Oracle database include Standard, Enterprise, Developer and Personal [33]. There is also a free Oracle

Database XE (Express Edition) that is available for download with an account [34].

� MySQL:

MySQL (also known as My Structured Query Language) was one of the first open-sourced database

that the world had seen. It is a Relational Database Management System (RDBMS) which ensures that

the data being put into the database is very structured and organized [35]. Not to be confused with

SQL, which runs on top of MySQL to query the databases. It uses SQL to perform operations such as

storing, retrieving and modification of a database. It is a database tool that when used alongside other

tools such as PHP and Apache Web Server creates a huge dynamic package making it very powerful.

It runs on several operating systems including: Windows, Linux and Mac OS X. MySQL provides a

prominent feature that is multi-user access that can access it at any point in time. My SQL database

system comprises a wide range of database technology and so many technologies supports that cater

to users with different requirements. MySQL is one of the most popular database softwares that exist

today. The latest version available today is MySQL 8.0.

� SQLite:

SQLite is a self-contained version of an SQL database engine [36]. It does not require a server and

takes very little to set up. It is a transactional database engine, much like Microsoft SQL. It is hosted

in the public domain, meaning it is free to use for any project. The entire database is able to run off

of a single file and is able to run off of the same disk that is requesting the data. SQLite does not have

a server counterpart, making it able to be useful for storage of local files. The library files are cross

platform, and can be kept very small. Reading data from a SQLite database can be quicker than from

straight file reading due to the way SQL transactions are organized. SQLite is very useful for smaller

projects that are unable to host a fully fledged server, and also only need to store and read files locally.

It is built to be very future proof and has long-term support in mind for future development.

� Microsoft SQL:

Microsoft SQL server is a relational database management system that was developed by Microsoft.

It was first started in the year 1989 and has been updated since then. Microsoft SQL server comes in

different varieties and styles depending on what it is going to be used for. It has standard versions

26

and specialized versions of it. It does have a free version which is called developer that is available for

the public. Microsoft SQL server is described as fast and agile. It also contains an AI in order to help

with faster predictions and better security. It can be used with with the language of your choice with

open source support. It can run on windows, Linux, and containers on premises, in the cloud, or in

hybrid environments.[37].

2.5.3 UML Language

In this section, we will describe some of the 14 different Unified Modeling Language diagrams. The UML is a

language of blueprint for software [38]. It categorizes them into two different diagrams, one being structural

and the other behavioral. The Unified Modeling Language models the static structure of the system. It

shows the relationships between Classes, Objects, Attributes, and Operations. The choice of what models

to create has a profound influence upon how one attacks a problem, and they shape a solution. No single

model is sufficient: complex systems are best approached through small sets of nearly independent models.

It may express every model at different levels of details and functionality built into each. They connect the

best models to reality. The UML movement has grown since it was first created.

The Object Management Group (OMG) is a non-profit corporation founded in 1989 [39]. It has over 800

members and works to establish industry guidelines and specifications to provide an accepted framework for

application development.

Rational corporation hired Grady Booch, Ivar Jacobson and James Rumbaugh developers of UML, and

they worked together to unify and bring their methods of compliance with each other [40]. When it was first

developed there were over 50 different notations out there to do Object-Oriented Software Modeling. They

took the best of all of them. With this, they created a big committee inside OMG to work on putting them

together. Then eventually came out with the first approved UML 1.1 version in 1997.

UML is a standardized modeling language that can be used across various types of programming languages

and development processes. This would make it easier to understand it and be able to apply it to our

project College Class Scheduler. They’re useful in an Agile development environment and keep development

productive and focused. UML can make it simpler to navigate source code and plan out new features before

any other work is done. It can also make it easier to communicate with either technical and non-technical

people and have it evolve as the project continues [41].

27

� Composite Structure Diagrams:

The Composite Structure Diagram was introduced in UML 2.0 [42]. It is designed to showcase the

relationships between classes, interfaces, and packages. More specifically, it is made to show the internal

connections in classes. These types of diagrams are useful when you want to show a large amount of

classes and the internal workings of each class. Figure 2.1 shows a Class Diagram [42].

Figure 2.1: Composite Structure Diagram

� Deployment Diagrams:

Deployment Diagrams are designed to show the run-time configuration of all the components that

run within your system [43]. It shows the hardware, software, and middle-ware used throughout the

project. These types of UML documents are best used to describe systems where you are designing

both the software to be used, as well as custom hardware, and how everything interacts with each

other. It can also describe the makeup of a server, with connections to the web-server, app server, and

any databases and devices that utilize it.

� Package Diagrams:

Package diagrams are structural diagrams made to display the organization of the different high-level

elements in a project [44]. Package diagrams show the overall structure and dependencies between

different modules by separating them into packages. These packages are used for organizing larger

systems, and can contain diagrams, documents and other types of UML documentation. One use of

this type of diagram is to use it to organize a large number of other UML diagrams and other supporting

documents used throughout your project. In this way you are able to keep track of each portion of

your project and can refer down into each package in order to learn more about a specific part.

� Profile Diagrams:

Profile diagrams provide a way to describe extensions in UML classes [45]. These extensions can be

28

used for different effects. For example, surrounding the name of your element with << and >> symbols

allows you to make that element appear as primitive. You can also add tags to elements, which can

be useful for marking who wrote a class or for version control. Finally, there are constraints you can

add onto a class, which limits the value of some variable in the class to specific values, avoiding errors.

These used in conjunction can be added to other UML documents in order to give more detail to

classes.

� Class Diagrams:

Class diagrams are structural (static) type diagrams [46]. Class diagrams are used to describe a set of

objects, their attributes and the relationships between those objects. Each class in the class diagram

in represented by a rectangle divided into three sections. The top section gives the class name, the

middle section is for class attributes, and the third section is for class operations/methods. Figure 2.2

shows a Class Diagram [47].

Figure 2.2: Class Diagram.

Attributes (fields, instance variables) and operations/methods are entered left justified, with the first

letter of the names in lowercase. Attributes are noted in the format visibility name:type. Opera-

tion/methods are noted with visibility name(parameters) : return type. Symbols are used to designate

visibility as public (+), private (-), protected (#), package (∼) or derived (\). Static methods are

underlined. Arrows connect and define related classes.

� Object Diagram:

Object diagram is another structural diagram type [48]. It is used to show an instance or a “snap

shot” of class objects at a particular instance. This gives a more detailed view of objects and their

29

values. Individual object slots are defined by –objectName : type–attribute = value and links show

associations between objects [49]. Figure 2.3 shows a Object Diagram.

Figure 2.3: Object Diagram.

� Component diagram:

Component diagram is a structural (static) type diagram [50]. These diagrams show system com-

ponents along with provided or required interfaces, ports, connectors and the relationships between

these components. Components can be logical (business or process components) or they can be phys-

ical (software). Component diagrams show system dependencies at a very detailed level or from an

overview level [51]. Figure 2.4 shows a Component Diagram.

Figure 2.4: Component Diagram.

30

� State Machine Diagrams:

State machine diagrams are behavioral type diagrams [52]. These diagrams describe the behavior of

objects according to their state at the moment. Using certain triggers and an event pool what happens

in the system is diagrammed. There are two kinds of state machines - behavioral state machine (finite

state transitions) and protocol state machine (usage protocol or lifecycle). Figure 2.5 shows a State

machine diagram [53].

Figure 2.5: State Machine Diagram

� Use-Case Diagrams:

A Use-case diagram is a visual representation of what a system must do [38]. This model creates a

visual representation so that anyone who is not a software engineer can understand. This diagram falls

under the behavioral UML diagram type. This model models the process of a system using actors and

use-cases and how they influence each other. Actors are referred to as the users, and the use-cases are

referred to as the set of actions, services, and functions that the system needs to do. This model of

this diagram is very handy because it provides a great visual representation of what the system would

look like and how the system would function. By developing this diagram, one can see if there are any

internal or external factors that can affect the outcome of the system. Figure 2.6 shows a Use Case

Diagram [38].

31

Figure 2.6: Use Case Diagram.

� Communication Diagrams:

We can describe the communication diagram as a model that reflects who is communicating with whom

[38]. This model shows us how the actors and objects are communicating. With this model, you have

undirected lines that show that communication is occurring but with no return method. The reason

for this is that we are to assume that their communication is a two-way process. The communication

is noted with every undirected line we assign the name of the message that is occurring.

� Activity Diagram:

The activity diagram works much like the flowchart [38]. The basic nature of this diagram is scenario

specific. They represent a set of activities performed in a particular scenario. The primary purpose

of this diagram is to layout all the positive and negative scenarios that can happen. However, the

activity diagram is more detailed than the flowchart. This model reflects both computational and

organizational workflows. The activity diagram falls under the behavioral UML diagram type. The

cases modeled are sequential and concurrent. In this diagram, we identify major activities associated

with conditions. One important thing to point out is that an activity diagram does not match exactly

with code. The activity diagram is made to understand the flow of activities and is primarily used by

business users.

32

� Sequence Diagram:

The sequence diagram or as sometimes referred to as an event diagram and is a structured represen-

tation of behavior as a series of sequential events over time[41]. It can be used to depict workflow,

captures the exchange of information and responsibility through the system. It can also be used to

make explanatory models for use case scenarios. The sequence elements are arranged in a horizontal

sequence where messages are sent back and forth between elements. An actor is used to represent a

user, a stereotyped element includes boundary, control, and entity can be used to represent screens,

controllers, or database items. An example of sequence diagram is shown in figure 2.7[54].

Figure 2.7: Sequence Diagram.

� Timing Diagram: A timing diagram explain the behavior of different objects in a time scale. It can

be used to see how much time each step of a process takes and be used to evaluate to make it more

efficient[41]. Another use of the timing diagram can define hardware driven or embedded software

components and specify time-driven business processes. An example of a timing diagram is shown

2.8[55].

33

Figure 2.8: Timing Diagram

� Interaction Overview Diagram: Interaction interaction overview diagrams show how the cooperation

between other interaction diagrams in order to illustrate a control flow. It includes initial nodes, flow

final nodes, activity final nodes, decision nodes merge nodes, fork nodes, and join nodes[41]. There are

two types of elements one of which is interaction elements which display an inline interaction diagram.

They can be any one of the four types Sequence, Timing, Communication or Interaction Overview.

Another element is an interaction occurrence elements are references to an existing interaction diagram.

An example of an Interaction Overview Diagram is shown 2.9[56].

Figure 2.9: Interaction Overview Diagram

34

2.6 Summary

By evaluating the different applications, tools, and models that are available today, we concluded the follow-

ing. The common and distinctive attributes of each application when compared to our system. The Scrum

process model we elected because of all its features and agility. The particular programming language and

tools that we chose and why we opted to use them. The next chapter will go over the requirement engineering

process and illustrate the requirements of our system.

35

Chapter 3

Requirement Specification and

System Modeling

Objectives:

� Define the Requirement Engineering Process and how it is used in our system.

� Explain the user and system requirements of our system.

� Illustrate the requirements of our system using requirement models.

� Illustrate the system flow with an activity diagram.

36

3.1 Introduction

This chapter will introduce the concept of the requirements of the engineering process which encompass

Elicitaion, Analysis, Defining requirements and Specification. This chapter will also provide context about

the user and system requirements for the application. Which will demonstrate an overview of the entire

system by looking at it from a broad perspective.

3.2 Requirement Engineering Process

The Requirement Engineering Process is the process in which a project’s requirements are either decided or

changed. These requirements are used by developers, and users alike in order to understand how a system

works and the rules it operates on. The steps of the Requirement Engineering Process include Elicitation,

Analysis, Defining requirements, and Specification.

3.2.1 Elicitation

The first and by far the most important step when starting your engineering process is eliciting the require-

ments. Eliciting can be defined as capturing, discovering, or gathering the requirements needed to begin the

process [57]. Normally this job or task is assigned to a business analyst, application architect, or something

similar. Not only does this person obtain or gather all the information, but they also must manage any of the

requirements that a stakeholder may have. This step is crucial, and it requires input from other people that

would potentially be affected by the future business solution. This process ensures that the requirements will

meet their business needs. In order to achieve this, one must identify potential stakeholders very early in the

project. By ensuring that whoever is responsible manages the requirements of the elicitation process. The

business analyst must learn to identify, track, and report the progress towards the requirement completion.

This person would also oversee defining, documenting, and analyzing any business problems to discover any

hidden requirements. This individual must facilitate effective requirement brainstorming sessions. They

must also use critical questions to initiate the requirement elicitation process. They must also capture and

communicate assumptions that the stakeholder requirements need. A major cause of project overruns or

failures is usually identified by missing and/or misunderstood requirements.

37

3.2.2 Analysis

One of the steps that is important in the requirement engineering process would be requirement analysis.

In the requirement analysis you have to specify which software operational characteristics. It will also

indicates software interface with other system elements and establishes constraints that software must meet.

The analysis step allows a software engineer to elaborate on basic requirements. Requirement analysis also

allows the engineer build models that depict user scenarios, functional activities, problem classes and their

relationships, system and class behavior, and the flow of data as it is transformed. [14].

3.2.3 Defining and Documenting Requirements

Another part of the quality framework for this project is Documentation. From the proposal to completion

of the project, each phase should be thoroughly documented. In this step, user and system requirements

are defined to give clear and concise descriptions that set guidelines for the scope of the project. User

requirements provide non-technical descriptions of tasks to be completed. While system requirements provide

detailed technical specifications. Each task is an individual unit of work that must be completed [58]. These

requirements are then translated into graphical representations like use-case, sequence or activity diagrams.

Diagrams are used to make the process easier to understand. Relationships between tasks, who is responsible

for completing tasks, what deliverables are expected and how end-users will interact with the application

can all be translated into illustrations. After a period of reviewing, collaboration, feedback and updating

the definition of the application prototype should be established. Each task must go through a verification

process to demonstrate that the required task has been completed properly. These documented requirements

and diagrams become part of the reference points that map the direction of the project. During and after a

project the documentation serves as a communication medium, information repository, provides information

and tells users how to use and administer the software [59].

3.2.4 Requirement Specification and Agreement

This is the final main step of the Requirements Engineering Process. This step involves the formal finalizing

and review of all requirements, and creation of the requirement models used to describe them. These

diagrams can then be shared internally as guidelines for future development of the software, or externally

to clients. Diagrams you could use to display these requirements include Entity–relationship model, and

Function Decomposition diagrams. Moving forward, this document is refereed to throughout the design of

38

the product, and can continue to be edited and changed as requirements are added or changed.

3.3 Requirements Documentation

This section will describe the User and System requirements for the application. The User requirements talk

about our system in a higher level sense, giving an overview of the entire system. The system requirements

will give specifics on exactly how different parts of the application function, and how it relates back to the

system as a whole.

3.3.1 User Requirements

1. The system shall allow the user to create an account and login to the system.

2. The system shall allow the user to input courses.

3. The system shall allow the user to input degree plans.

4. The system shall allow the user to input student information.

5. The system shall store related data in a database management system.

6. The system shall allow storage of schedule rotation for upcoming semesters.

7. The system shall allow selection of the appropriate degree plan for each student.

8. The system shall be able to generate a report of courses still required for graduation

9. The system shall not remove major courses until a grade of C or higher is achieved.

10. The system shall generate a report that updates to reflect successfully completed courses

3.3.2 System Requirements

1. When the user logs in the system shall take the user to the main page which contains the following

buttons: Students, Plans, Courses, Plan Courses, Student Courses, Reports, Browse, and Sign Out.

Each respective button takes the user to the following specific areas.

2. The student page must accept specific input about each student so that each individual has a distinct

profile that can later be used for database queries. The input fields will accept the unique identifier

39

Student ID and the student’s designated degree plan can be selected. First and last name, year, and

semester student enrolled in this plan. Each page will have a save button that submits input data

to the database and a back button that returns the user to the main page. Information for a list of

students can be entered as the screen will clear each time the save button is clicked.

3. The plans page must contain text fields to input the plan name, year, and hours. Each plan name

will be the official catalog degree title. The user shall be allowed to input degree plan names such as

Information Technology or Mathematics. Year will associate the plan entered with the catalog year

and hours are the number of hours required to complete the degree plan. This page should also have

a save button to save the information and a back button to return to the main page.

4. The courses page must contain text fields to input information like course code, course number, course

name, and credit hours. Drop-down lists will be used to select when the course is offered (Fall, Spring

or Both) and any prerequisites or corequisites for a particular course. This page will also have a save

button to save the information and a back button to return to the main page.

5. The plan courses page must bring the data entered for plans and the data entered for courses together

in order to complete the structure of each degree plan. This page will use drop down lists to associate

a plan with a particular course. Another drop down list will be used to designate the plan course as

either a major, core, or elective course. This page will also have a save button to save the information

and a back button to return to the main page.

6. Next a student courses page must bring the data entered for students and the data entered for courses

together to reflect the students completed courses. On the page text fields will be used to enter a

specific student’s ID number and year course was taken. Drop down lists will be use to select course,

year, and grade. This page will also have a save button to save the information and a back button to

return to the main page.

7. The reports page must allow selection of a specific student. This will done by text field and a student’s

ID number. When a student’s ID number is entered clicking a generate report button will produce a

report that list all courses student must complete to meet degree requirements.

8. A major Couse must remain on student’s list of required classes until a grade of C’ or higher is achieved.

9. Database queries will be use to filter report data so that only courses required to complete a degree

plan will be displayed on the list.

40

10. Text tips, hover effects, field selection highlights will be used to guide users through system usage.

3.4 Requirement Models

This section contains Use-Case diagrams to show some of the use cases in our system. The diagrams will be

generated with UML. As mentioned in section 2.5.3 there are 14 types of UML diagrams. We will be using

use case diagrams in order to describe scenarios.

Figure 3.1 shows a use case for how a user can use the log-in page. It contains a graphical layout with

three options available. First, existing users will be able to log-in with their user-name and password to

access options on the main page. Second, new users are directed to the new user setup page. On the setup

page a user-name, password, and email address will be required. Third, for existing users that have forgotten

their password – an option to have the password emailed to them.

Figure 3.1: User Log-In Options.

Figure 3.2 represents when generating a report, the user will be able to input a student course schedule

for a semester and compare that schedule to the course’s availability, confirming that it is available.

41

Figure 3.2: Check Course Availability

42

Figure 3.3 represents when the generate report button is pressed, after inputting a course schedule, the

program will generate a report containing the classes still needed in order to graduate on time. It also shows

the save button which will allow you to save the report and back button which will take you back to the

main page.

Figure 3.3: Generate Report

Figure 3.4 represents when the user generates report they will be shown that the courses are Texas

Common Courses.

Figure 3.4: Texas Common Courses Report

Figure 3.5 represents when the user generates the report classes with higher failure rates are distinguished

from the ones with high passing rates. As well as recommending the user courses with the higher pass rate

if they are available for the semester.

Figure 3.5: Course Pass Rate Report

43

3.5 Summary

In this chapter we defined what system requirements specifications are and all the steps involved in it. This

chapter also provided the user and system requirements for our application by providing illustrations for

each of those requirements. In the following chapter, we will introduce the design for our system.

44

Chapter 4

System Design

Objectives:

� Illustrate our system’s database design.

� Introduce the graphical user interfaces of our system.

� Explain the navigation mechanism of our system.

� Illustrate the class diagram for our system.

45

4.1 Introduction

In this chapter we will describe the design of the system. We will showcase the database design, as well as

the GUI. We will also explain our system navigation, showing how one would use the software.

4.2 Database Design

In this section graphical layouts of the proposed database are presented as models that define the data to be

stored and the relationships between that data. The database design process involves designing a Conceptual

Model, Logical Model, and Physical Model to represent the database. The Conceptual Model organizes the

basic entities of a system based on their relationships. The Logical Model is used to determine basic data

types, as well as remove many to many relationships. And the Physical Model is used to assign data types

that are specific to the database management system used, as well as to determine keys. These models

provide quick reference diagrams for how the underlying information is organized. Each model progressively

adds depth to the formation of the database structure.

Figure 4.1: Conceptual Model

46

The conceptual model is a graphical demonstration of a database [60], the external main entities are

named and connected to provide a user view of the database and is the simplest in terms of comprehension.

The highest level is typically used to interact with business people or someone who is not technically versed

in the database. The conceptual model is composed of concepts and ideas such as entities and relationships.

We used the previously identified requirements to build the Conceptual Model shown in Figure 4.1 with the

tables Students, Plans, and Courses. The real life concept of students taking courses became a relationship

in the model. One Student will take many Courses. Many students select one type of degree plan. These

Plans have Courses that must be completed. Selected entities later become tables in the database.

Figure 4.2: Logical Model

Next the Logical model, shown in figure 4.2, defines what internal data is required within each entity.

For example each Student requires attributes like a unique ID, name and enrollment year. These details add

columns to the tables and establish a clear accurate definition of each entity. The unique IDs are designated

as primary keys to provide an exclusive reference points to each entity and foreign keys bind related entities

together. The relationship between Course and Plan is established by adding planID as a foreign key to the

course table. Recursive relationships are labeled with an arrow that originates and ends at the same table.

A recursive relationship is used here when courses have prerequisites which are already on the Course table,

so there was no need to create a separate table. As our database is a relational database we must remove

any many-to-many relationships. That is why there were tables added in the logical when compared to the

conceptual model. For example a table was created between Students and Courses called Students Courses

which stands to combine the two tables and remove the many to many relationship between them. In

other cases in order to avoid redundant data entry or the need to update in multiple tables some entities

47

were divided into separate tables improving efficiency and normalizing the database structure. Instead of

repeating fall, spring or both for each course in multiple location a separate Rotation table was created.

Figure 4.3: Physical Model

Finally the physical model, shown in figure 4.3, is a graphical representation of how the database will

be implemented. Data types are added for each entity attribute. For example ID values are designated as

INT and student names as VARCHAR(45). These data type selections affect the storage requirements for

the database. In addition to data type, icons distinguish primary and foreign keys for each entity. Solid and

dashed lines visually display cardinality and relationships between entities. The physical model reflects how

all entities in the database are structured in order to work together, so that student degree plan information

is available. These data models serves as reference points in the upcoming stage of database development,

which is database implementation.

4.3 Graphical User Interface Design

This section details the graphical user interface of each page of our system.

Figure 4.4 shows the log-in page. The user is able to enter their Username and Password, then click login

to enter the system. There is also a Sign Up button that can be pressed to take the user to the Sign Up page

and create an account, as well as a Forgot Password link that can help the user retrieve their password.

48

Figure 4.4: Log-in Page

49

Figure 4.5 shows the Main page, or the main menu of the system. It contains navigational buttons

connecting to various parts of the system. There are buttons for: Student, Plans, Courses, Plan/Courses,

Student/Courses, Reports and Browse. Each of these buttons will take you to their respective pages shown

below. There is also a Sign Out button that is used to securely sign the user out and end the session.

Figure 4.5: Main Page

50

Figure 4.6 shows the page the user will see after pressing the ’Student’ button on the main page. This

page allows the user to enter in student information into the database. The page will have a text box to

input the student ID, a drop-down menu to select the plan they are on, and two text boxes to input the

student’s first and last name. The page will also have a text box to input what year the student is, and a

drop-down menu selecting the student’s semester. All the information on this page is required. After it is

all entered the user can click save to add the student to the database and return to the main page, or the

user can click back to cancel entering student information and return to the main page.

51

Figure 4.6: Students Page

Figure 4.7 shows what the user will see on the plan page after selecting the button ’Plans’ on the main

page. The purpose of the page is to allow the user to select a plan that suits them best. What is shown

will be a form which will contain text-fields that are required to fill out. The top text-field is labeled ”Plan”

which the user will input the plan which they require to use. The second text-field is labeled ”Year” which

will allow the user to input the year of the plan they have selected. The final text field is labeled ”Hours”

52

which will contain the course hours of the chosen plan. It also contains a ’Save’ button that will give the

user the option to save the plan they have selected and a ’Back’ button so the user can return the previous

page they had accessed.

Figure 4.7: Plans Page

53

Figure 4.8 shows the page the user will see after pressing the ’Courses’ button on the main page. This

page is for entering course information into the database. There are four required fields, as well as three

optional ones. Firstly there are three text box for entering the course name, number, and credit hours.

There is also a drop-down menu to select what term the course takes place. Finally there are three optional

drop-down menus that allows the user to select up to two prerequisite courses, as well as one co-requisite

one. After all of the course information has been entered, the user can either choose save to input the data

into the database and return to the main page, or back to cancel inputting the information and return to

the main page.

54

Figure 4.8: Course Page

Figure 4.9 shows what the user will see if they click the “Plan/Courses” button on the Main page. The

purpose of this interface is to combine data from Plans and Courses, thereby building complete degree plan

structures. First on this GUI is a drop down list that allows the user to select which Plan ID they want

to add information to. After selecting a Plan ID the next option is Course ID. The Course ID drop down

list connects a course to the selected plan. With the last drop down list, Type ID, one category (major,

55

core or elective) can be designated for each course selected. When the Save button is clicked- selected plan

information will be saved into the database. Duplicate entries will not be saved and a message will alert

users if a particular entry has already been created. To exit this page, the user can click the “Back” button

which returns them to the Main page.

Figure 4.9: Plan/Courses Page

Figure 4.10 shows what the user will see if they click the ’Student Courses’ option in the Main page.

The user will see a form that contains text-fields and drop down lists for user input. The first text-field

will be ”Student ID” which the user will be prompted to input there ID. Following that it will be a drop

down list labeled ”Course ID”which will allow the user to select a course. The second text field is labeled

”Year” which the user will input the year of the chosen course. The following two drop down lists will be

”Semester” and ”Grade” which the user will have the option to select from the lists given. The page also

contains a ’Back’ and ’Save’ button. The ’Save’ button will save the progress the user has done on the form

and the ’Back’ button will take the user to the previous page.

56

Figure 4.10: Student Courses Page

57

Figure 4.11 displays what the user will view when the user clicks on ”Reports” button. It takes the user

to the reports page were the user will input the student ID. After inputting the students ID the user can

generate the degree summary report by clicking ”Generate Report” button. It also gives the user the option

to click on ”Back” button which will take the user to the Main page.

Figure 4.11: Generate Report

4.4 System Navigation

This section shows a model of the relationships between each system component and how those components

work together to take information input, process it and output reports. Double-sided arrows (↔) represent

the ability to move back and forth between application pages. For example, clicking the “Login” button on

the Log-in page will bring up the Main page. Clicking the “Back” button on the Main page will go back to

the Log-in page. In addition to navigating between pages, buttons are used to perform functions like save

information and generate reports. Some information will be manually entered into text fields. Drop down

list contain common options that need to be readily available in the system. Some data will automatically

58

calculate to avoid manual entry of information where possible. Each page of the application handles specific

portions of student degree plan information. Degree information can then be summarized and presented

in various manners by selecting an option on the Reports page. These reports can be printed or email to

students. The system diagram below is a graphical layout of expected system behavior. Figure 4.12 shows

College Class Scheduler System Diagram.

Figure 4.12: System Diagram

59

4.5 Summary

This chapter represented the steps of our database design and explained the data models of our database. It

explained the GUI of each part of our software. We also walked through how to navigate the system through

the System Navigation diagram.

The next chapter will go over the code used to develop our system.

60

Chapter 5

Implementation and Testing

Objectives:

� Present a working version of the new application.

� Demonstrate how development tools were utilize to implemented each GUI.

� Provide the code used to implement each GUI.

� Present testing scenarios that demonstrate some capabilities of the new system.

61

5.1 Introduction

This chapter will present screenshots from the newly developed application College Class Scheduler. Each

screenshot represents a graphical user interface (GUI) that was developed to provide functionally in the

system. Along with images the code required to create each GUI will also be presented. Which development

tools and how they were used will be included. In the last section of this chapter some testing scenarios are

presented. Description are provided for each test condition.

5.2 GUI and Explanations

This section will cover each part of our GUI. and our database, as well as the code needed to create it.

Login Page:

Figure 5.1: Login Final GUI

62

Figure 5.1 shows the Login Page. This page allows the user to enter a username and password to log in to

the system. There are also buttons to sign up, and for forgotten password (currently unimplemented). The

code for this page’s implementation can be found in Appendix B.1. Image credited to the UNTD Website[61]

Main Page:

Figure 5.2: Main Final GUI

Figure 5.2 shows The Main Menu for the system. There are buttons for each part of the system, and

also the log out button. The code for this page’s implementation can be found in Appendix B.2.

63

Student Page:

Figure 5.3: Student Final GUI

Figure 5.3 shows the Student Page. This page allows the user to input student information into the

database. The code for this page’s implementation can be found in Appendix B.3.

64

Plans Page:

Figure 5.4: Plans Final GUI

Figure 5.4 shows the Plans Page. This page allows the user to input plan information into the database.

The code for this page’s implementation can be found in Appendix B.4.

65

Courses Page:

Figure 5.5: Courses Final GUI

Figure 5.5 shows the Courses Page. This page allows the user to input course information into the

database. The code for this page’s implementation can be found in Appendix B.5.

66

Plan Courses Page:

Figure 5.6: Plan Courses Final GUI

Figure 5.6 shows the Plan Courses Page. This page allows the user to link courses to specific plans. The

code for this page’s implementation can be found in Appendix B.6.

67

Student Courses Page:

Figure 5.7: Student Courses Final GUI

Figure 5.7 shows the Student Courses Page. This page allows the user to mark which courses any student

has taken. The code for this page’s implementation can be found in Appendix B.7.

68

Reports Page:

Figure 5.8: Reports Final GUI

Figure 5.8 shows the Reports page. This page allows the user to see what courses remain for any

student’s plan based on what courses they completed. The code for this page’s implementation can be found

in Appendix B.8.

5.3 Testing Scenarios

Test Scenario 1: Functionally

In this scenario user logins were tested to verify login ability. An unsuccessful login results in an Incorrect

username or password alert.

69

Figure 5.9: Login test Incorrect password

70

A successful login presents the user with the Main page where they can select specific areas to enter

data as needed.

Figure 5.10: Main Page Functionally Test

71

Navigating down the list from the top is the first option Students. Clicking this button presents the

Student page where basic student information can be entered into the system.

Figure 5.11: Students Page Functionally Test

Clicking the Save button will enter the data into the database and clear the fields in preparation for the

next entry. On each page clicking the Back button will return the user to the Main page where they can

make another selection.

The next option is Plans. Here various degree plans can be entered - the name of the degree plan, the

catalog year, and how many hours it will take to attain this degree.

Figure 5.12: Plans Page Functionally Test

72

The Courses button presents the Courses screen. Here detailed information about courses offered can

be entered into the text field. The drop down lists provide convenient access to reusable lists of data that

is stored in the database. Courses that are already in the database will not be saved as duplication is not

allowed.

Figure 5.13: Courses Page Functionally Test

Figure 5.14: Courses Page Drop Down List Test

73

The Plan Courses button presents a screen where previously entered Plans and Courses are combined

to build a complete degree plan in the database.

Figure 5.15: Plan Courses Functionally Test

Likewise the Student Courses button presents a screen that links students with their completed courses

and the grade they received.

Figure 5.16: Student Courses Functionally Test

74

Next the Reports button where all the data entered previously is brought together. After typing the

Student’s ID number in the text field, click the Generate Report button. This will present a list of classes

that are still required in order for this particular student to complete their degree plan requirements.

Figure 5.17: Reports Page Functionally Test

Figure 5.18: Reports Page Functionally Test

75

When the user is ready to close the College Class Scheduler from the Main page click the Signout button

which exits the application and returns the user to the login screen.

Figure 5.19: Signout Functionally Test

For each of the selection options on the Main page- each text field and drop down list was tested and

verified to save the submitted data to the database.

Figure 5.20: Data saved to MySQL Database Functionally Test

76

Test Scenario 2: Reports

All data entered works together to provide a summary of what classes are still required for a student. All

major courses require a grade of C or higher otherwise these courses will remain on the list of courses to be

completed.

(a) Database grades. (b) Course required.

Figure 5.21: Grading system course required.

(a) Grade D or less. (b) Grade saved to database. (c) Course remains on list.

Figure 5.22: Major course remains on list until grade of C or higher..

77

(a) Grade ”‘C”’ or higher. (b) Grade saved to database. (c) Course removed from list.

Figure 5.23: Major course removed from list after passing grade.

78

Test Scenario 3: Presentation

Buttons, images, and text fields are centered on the application so they remain in place as the screen size

changes.

Figure 5.24: Screen Resize Presentation Test

Figure 5.25: Screen Resize Presentation Test

79

Pages are formatted to have consistent font types and colors. Font sizes and bold text are used to enhance

readability. Buttons, text fields, and drop down lists are controlled by size properties to maintain similar

proportions on each page.

Figure 5.26: Field Selection Color Change Test

Each text field changes color when clicked to indicate the field is selected and ready for user input.

Drop down list have a hover effect when the mouse passes over them to indicate they are clickable for

more options.

Figure 5.27: Grayscale Presentation Test

Each screen was viewed in grayscale to verify readability of text prompts from a different perspective.

80

5.4 Summary

This chapter presented the new application College Class Scheduler. The component graphical user inter-

faces were presented in order to demonstrate the variety of functionally linked together to create this new

application. Code used to create each GUI was presented. Testing scenarios provided further detailed insight

into how the built-in features of the College Class Scheduler preform.

81

Chapter 6

Conclusion and Future Work

Objectives:

� Describe the chapters of the system’s proposal report.

� List future work for the system.

82

6.1 Conclusion

This concludes the report presenting the college class scheduler. This degree planning application was

designed to be used as a desktop platform. This system is intended for faculty use to automate the process

of scheduling classes. The following is a summarization of all the previous chapters:

� Chapter 1 provided an introduction to the background of the proposed system. It outlined and defined

the proposed system by each section.

� Chapter 2 provided examples of related systems that were similar to the application. It outlined and

highlighted the selected tools that were used to implement the application.

� Chapter 3 provided a brief definition of the Requirement Engineering Process and its implementation.

It defined the user and system requirements. This chapter showcased the requirements of the system

using the models needed and explained the system flow with diagrams.

� Chapter 4 introduced the graphical user interface of the system. This chapter showcased the system’s

database design, class diagram, and explained the navigation mechanism.

� Chapter 5 presented the implementation of the system. It provided the code needed for each graphical

user interface and demonstrated the utilization of the tools on each GUI. The systems functionality

was proved by providing testing scenarios.

6.2 Future Work

Without the constraint of time the team would have implemented the following features to help improve the

application.

� Sign Up – The team wanted to implement a sign up page that would allow the user to create an

account. By creating an account, the user’s course work information would be saved for future use.

� Browse – The team wanted to implement a Browse button that would allow the user to automatically

import a student’s report to automate the data entry.

� Report – The team wanted to add an additional feature that once the report was generated it would

divide the courses into different semesters based on the courses remaining for each user.

83

� Texas Common Course Numbering (TCCN) – The team wanted to add Texas Common Course Num-

bering system (TCCN) to the courses. The system would crossed-reference and mark all transferable

credits from other institutions to UNTD.

84

Appendix A

Paper Degree Plan Example

The documents below are the current IT degree requirements as of 2019.

85

2019-2020

Information Technology
Use this checksheet as a guide for selecting classes and refer to your online Academic Advisement Report to review and monitor degree and graduation requirements.

Revised 4/22/19

Core Curriculum Recommendations – 42 Hours
Core Foundation Area TCCNS # UNTD # Course Hrs Grade Course/Term

Major Curriculum Requirements – 59 Total Hours *Must maintain advanced CSCE course GPA of 2.75 or better

IT Major (58 Hours)
TCCNS # UNTD # Course Name Hrs Grade Course/Term

Electives/Minor –19+ Hours (Additional hours may be required based on coursework completed above. 120+ total hours needed for graduation)
Course Hrs Grade Course/Term

3
3
3
3
3
3
3
3

86

2019-2020

Information Technology
Use this checksheet as a guide for selecting classes and refer to your online Academic Advisement Report to review and monitor degree and graduation requirements.

Revised 4/22/19

UNT Dallas Degree Requirements:
Requirement Complete

Semester 1

Semester 5

Semester 2

Semester 6

Semester 3

Semester 7

Semester 4

Semester 8

87

Appendix B

Implementation Code

This section provides the Java and MySQL code needed for the implementation of each class of the system.

B.1 Login Page

1 import j ava fx . geometry . I n s e t s ;

2 import j ava fx . geometry . Pos ;

3 import j ava fx . scene . Scene ;

4 import j ava fx . scene . c o n t r o l . Button ;

5 import j ava fx . scene . c o n t r o l . Hyper l ink ;

6 import j ava fx . scene . c o n t r o l . Label ;

7 import j ava fx . scene . c o n t r o l . PasswordField ;

8 import j ava fx . scene . c o n t r o l . TextFie ld ;

9 import j ava fx . scene . image . ImageView ;

10 import j ava fx . scene . layout . Background ;

11 import j ava fx . scene . layout . BackgroundFi l l ;

12 import j ava fx . scene . layout . BorderPane ;

13 import j ava fx . scene . layout . GridPane ;

14 import j ava fx . scene . layout . HBox ;

15 import j ava fx . scene . layout . VBox ;

16 import j ava fx . scene . pa int . Color ;

88

17 import j ava fx . scene . t ex t . Font ;

18 import j ava fx . scene . t ex t . FontWeight ;

19

20 public class Login {

21

22 // p r i v a t e s t a t i c Text t i t l e L ;

23 private stat ic Label userL , passL ;

24 private stat ic TextFie ld uName ;

25 private stat ic PasswordField pass ;

26 private stat ic Button log in , signUp ;

27 private stat ic Hyperl ink l i n k ;

28

29 public stat ic Scene getPage () {

30

31

32 BorderPane pane = new BorderPane () ;

33 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

34

35 VBox vboxT = new VBox(10) ;

36 vboxT . setAl ignment (Pos .CENTER) ;

37 vboxT . s e tPre fHe ight (50) ;

38

39 HBox hboxB = new HBox(10) ;

40 hboxB . setAl ignment (Pos .CENTER) ;

41

42 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

43 centerL . setAl ignment (Pos .CENTER) ;

44

45 // c r e a t e the components and add them to panes

89

46 // t i t l e L = new Text (20 , 20 , ” Login to Co l l ege Class Scheduler

”) ;

47 // t i t l e L . setFont (Font . f ont (” Roboto ” , FontWeight .BOLD, 25)) ;

48 // t i t l e L . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

49

50

51 ImageView image = new ImageView (”campus skyview . jpg ”) ;

52 image . s e tF i tHe ight (600) ;

53 image . setFitWidth (600) ;

54 image . s e tPre s e rveRat i o (true) ;

55 vboxT . getChi ldren () . addAll (image) ;

56

57

58

59 double buttonWidth = 110 ;

60 l o g i n = new Button (” Login ”) ;

61 l o g i n . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

62 l o g i n . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

63 l o g i n . setPrefWidth (buttonWidth) ;

64

65 signUp = new Button (” Sign Up”) ;

66 signUp . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

67 signUp . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

68 signUp . setPrefWidth (buttonWidth) ;

69

70 Login . se tL ink (new Hyperl ink (” Forgot Password?”)) ;

71

72 hboxB . getChi ldren () . addAll (signUp , l o g i n) ;

73 hboxB . se tSpac ing (10) ;

74

75

90

76 userL = new Label (”Username : ”) ;

77 userL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

78 userL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

79

80 passL = new Label (”Password : ”) ;

81 passL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

82 passL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

83

84 double TextFieldWidth = 210 ;

85 uName = new TextFie ld () ;

86 uName . setPromptText (” Enter Username”) ;

87 //uName . borderProperty (Color . rgb (0 , 56 , 130)) ;

88 //uName . setBorder (Color . rgb (0 , 56 , 130)) ;

89 uName . setPrefWidth (TextFieldWidth) ;

90 //uName . setBorder (new Border (new BorderStroke (Color . rgb (0 , 56 ,

130) , BorderStrokeSty le . SOLID , CornerRadi i .EMPTY,

BorderWidths .DEFAULT))) ;

91

92 pass = new PasswordField () ;

93 pass . setPromptText (” Enter Password”) ;

94 pass . setPrefWidth (TextFieldWidth) ;

95

96 // add pane to border pane

97 centerL . add (userL , 0 , 0) ;

98 centerL . add (uName , 1 , 0) ;

99 centerL . add (passL , 0 , 1) ;

100 centerL . add (pass , 1 , 1) ;

101 centerL . add (l ink , 1 , 2) ;

102 // centerL . setMargin (l ink , new I n s e t s (10 , 10 , 10 , 10)) ; //

I n s e t s (top , r i ght , bottom , l e f t)

103 // add gap

91

104 centerL . setVgap (10) ;

105

106 pane . se tCenter (centerL) ;

107 pane . setTop (vboxT) ;

108 pane . setBottom (hboxB) ;

109

110 I n s e t s x = new I n s e t s (0 , 10 , 75 , 0) ; // I n s e t s (top , r i ght ,

bottom , l e f t)

111 pane . setPadding (x) ;

112

113

114

115 Scene log inPage = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

116

117 return log inPage ;

118 }

119

120 public Hyperl ink getLink () {

121 return l i n k ;

122 }

123

124 public stat ic void se tL ink (Hyper l ink l i n k) {

125 Login . l i n k = l i n k ;

126 }

127

128 public stat ic Button getLoginButton () {

129 return l o g i n ;

130 }

131

132 public stat ic TextFie ld getUser () {

133 return uName ;

92

134 }

135

136 public stat ic PasswordField getPass () {

137 return pass ;

138 }

139 }

B.2 Main Page

1 import j ava fx . scene . Scene ;

2 import j ava fx . scene . layout . * ;

3 import j ava fx . scene . pa int . Color ;

4 import j ava fx . scene . shape . Line ;

5 import j ava fx . scene . t ex t . Font ;

6 import j ava fx . scene . t ex t . FontWeight ;

7 import j ava fx . scene . t ex t . Text ;

8 import j ava fx . scene . c o n t r o l . * ;

9 import j ava fx . geometry . * ;

10

11 public class MainPage {

12

13 private stat ic Button addSt , addPls , addCor , planCor , stCor , rpts ,

brow , signOut ;

14 private stat ic Text t i t l e L , t i t l e L 2 ;

15

16 public stat ic Scene getPage () {

17 BorderPane pane = new BorderPane () ;

18 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

19

20 VBox vboxT = new VBox(20) ;

93

21 vboxT . setAl ignment (Pos .CENTER) ;

22 HBox hboxB = new HBox(20) ;

23 hboxB . setAl ignment (Pos .CENTER RIGHT) ;

24 VBox vbox = new VBox(20) ; // c r e a t e and s e t pane

25 vbox . setAl ignment (Pos .CENTER) ;

26 I n s e t s l i s t X = new I n s e t s (11 , 12 , 13 , 14) ;

27 vbox . setPadding (l i s t X) ;

28

29 // c r e a t e the components and add them to panes

30 t i t l e L = new Text (20 , 20 , ”Main Menu”) ;

31 t i t l e L . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

32 t i t l e L . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

33

34

35

36 t i t l e L 2 = new Text (20 , 20 , ” S e l e c t opt ion below”) ;

37 t i t l e L 2 . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

38 t i t l e L 2 . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

39

40 vboxT . getChi ldren () . addAll (t i t l e L , t i t l e L 2) ;

41 Line l i n e =new Line () ;

42 l i n e . se tStartX (250) ;

43 l i n e . setStrokeWidth (2) ;

44 l i n e . s e tS t r oke (Color . rgb (193 , 165 , 113)) ;

45

46

47

48 vboxT . getChi ldren () . addAll (l i n e) ;

49

50

51 // c r e a t e button

94

52 double buttonWidth = 200 ;

53 addSt = new Button (” Student ”) ;

54 addSt . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

55 addSt . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

56

57 addPls = new Button (” Plans ”) ;

58 addPls . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

59 addPls . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

60

61 addCor = new Button (” Courses ”) ;

62 addCor . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

63 addCor . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

64

65 planCor = new Button (”Plan Courses ”) ;

66 planCor . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

67 planCor . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

68

69 stCor = new Button (” Student Courses ”) ;

70 stCor . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

71 stCor . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

72

73 rp t s = new Button (” Reports ”) ;

74 rp t s . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

75 rp t s . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

76

77 brow = new Button (”Browse”) ;

78 brow . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

79 brow . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

80

81 signOut = new Button (” Sign Out”) ;

82 signOut . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

95

83 signOut . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

84

85

86 addSt . setPrefWidth (buttonWidth) ;

87 addPls . setPrefWidth (buttonWidth) ;

88 addCor . setPrefWidth (buttonWidth) ;

89 planCor . setPrefWidth (buttonWidth) ;

90 stCor . setPrefWidth (buttonWidth) ;

91 rp t s . setPrefWidth (buttonWidth) ;

92 brow . setPrefWidth (buttonWidth) ;

93 signOut . setPrefWidth (buttonWidth) ;

94

95 hboxB . getChi ldren () . addAll (signOut) ;

96

97 vbox . getChi ldren () . addAll (addSt , addPls , addCor , planCor ,

stCor , rpts , brow) ;

98

99 pane . se tCenter (vbox) ;

100 pane . setTop (vboxT) ;

101 pane . setBottom (hboxB) ;

102

103 I n s e t s x = new I n s e t s (25 , 11 , 25 , 11) ;

104 pane . setPadding (x) ;

105

106 Scene scene = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

107 return scene ;

108 }

109

110 public stat ic Button getStudentsButton () {

111 return addSt ;

112 }

96

113

114 public stat ic Button getPlansButton () {

115 return addPls ;

116 }

117

118 public stat ic Button getCoursesButton () {

119 return addCor ;

120 }

121

122 public stat ic Button getPlanCoursesButton () {

123 return planCor ;

124 }

125

126 public stat ic Button getStudentCoursesButton () {

127 return stCor ;

128 }

129

130 public stat ic Button getReportsButton () {

131 return rp t s ;

132 }

133

134 public stat ic Button getBrowseButton () {

135 return brow ;

136 }

137

138 public stat ic Button getSignoutButton () {

139 return signOut ;

140 }

141 }

97

B.3 Student

1 import j ava fx . scene . Scene ;

2 import j ava fx . scene . layout . * ;

3 import j ava fx . scene . pa int . Color ;

4 import j ava fx . scene . t ex t . Font ;

5 import j ava fx . scene . t ex t . FontWeight ;

6 import j ava fx . scene . t ex t . Text ;

7 import j ava fx . scene . c o n t r o l . * ;

8

9 import java . s q l . SQLException ;

10 import java . u t i l . ArrayList ;

11 import java . u t i l . C o l l e c t i o n s ;

12

13 import j ava fx . geometry . * ;

14

15 // import j ava fx . event . * ;

16 public class Students {

17 // step 1 : d e f i n e your components (e . g . button , text , l a b e l)

18 private stat ic TextFie ld sidTF , fnameTF , lnameTF , yearTF ;

19 private stat ic ComboBox<Str ing> plansCB , semesterCB ;

20 private stat ic Button back , save ;

21 private stat ic Label sidL , plansL , fnameL , lnameL , yearL , semesterL ;

22 private stat ic Text text1 , t ext2 ;

23

24 public stat ic Scene getPage () throws SQLException {

25

26 // step 2 : Create panes

27

28 BorderPane pane = new BorderPane () ;

29 pane . setBackground (new Background (new BackgroundFi l l (Color .

98

WHITE, null , null))) ;

30

31 VBox vboxT = new VBox(20) ;

32 vboxT . setAl ignment (Pos .CENTER) ;

33 HBox hboxB = new HBox(20) ;

34 hboxB . setAl ignment (Pos .CENTER) ;

35 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

36 centerL . setAl ignment (Pos .CENTER) ;

37

38 // c r e a t e the components and add them to panes

39 t ext1 = new Text (20 , 20 , ” Students ”) ;

40 t ext1 . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

41 t ext1 . s e t F i l l (Color .WHITE) ;

42

43 t ext2 = new Text (20 , 20 , ” Please ente r the f o l l o w i n g student

in fo rmat ion then c l i c k save . ”) ;

44 t ext2 . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

45 t ext2 . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

46

47

48 vboxT . getChi ldren () . addAll (text1 , t ext2) ;

49 vboxT . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

50 vboxT . s e tPre fHe ight (115) ;

51

52 double buttonWidth = 110 ;

53 back = new Button (”Back”) ;

54 back . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

55 back . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

56 back . setPrefWidth (buttonWidth) ;

99

57

58 save = new Button (”Save”) ;

59 save . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

60 save . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

61 save . setPrefWidth (buttonWidth) ;

62

63 hboxB . getChi ldren () . addAll (back , save) ;

64 hboxB . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

65 hboxB . s e tPre fHe ight (80) ;

66

67

68 s idL = new Label (” Student ID : ”) ;

69 s idL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

70 s idL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

71

72 plansL = new Label (” Plans : ”) ;

73 plansL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

74 plansL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

75

76 fnameL = new Label (” F i r s t Name : ”) ;

77 fnameL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

78 fnameL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

79

80 lnameL = new Label (” Last Name : ”) ;

81 lnameL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

82 lnameL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

83

84

85 yearL = new Label (”Year : ”) ;

100

86 yearL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

87 yearL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

88

89 semesterL = new Label (” Semester : ”) ;

90 semesterL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

91 semesterL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

92

93 sidTF = new TextFie ld () ;

94 fnameTF = new TextFie ld () ;

95 lnameTF = new TextFie ld () ;

96 yearTF = new TextFie ld () ;

97 yearTF . setPromptText (”YYYY”) ;

98 plansCB = new ComboBox<Str ing >() ;

99 semesterCB = new ComboBox<Str ing >() ;

100

101 // add pane to border pane

102 centerL . add (sidL , 0 , 0) ;

103 centerL . add (sidTF , 1 , 0) ;

104 centerL . add (plansL , 0 , 1) ;

105 centerL . add (plansCB , 1 , 1) ;

106 centerL . add (fnameL , 0 , 2) ;

107 centerL . add (fnameTF , 1 , 2) ;

108 centerL . add (lnameL , 0 , 3) ;

109 centerL . add (lnameTF , 1 , 3) ;

110 centerL . add (yearL , 0 , 4) ;

111 centerL . add (yearTF , 1 , 4) ;

112 centerL . add (semesterL , 0 , 5) ;

113 centerL . add (semesterCB , 1 , 5) ;

114

115 // add gap

116 centerL . setVgap (20) ;

101

117 centerL . setHgap (20) ;

118

119 pane . se tCenter (centerL) ;

120 pane . setTop (vboxT) ;

121 pane . setBottom (hboxB) ;

122

123 I n s e t s x = new I n s e t s (0 , 0 , 0 , 0) ; // I n s e t s (top , r i ght ,

bottom , l e f t)

124 pane . setPadding (x) ;

125

126 Scene p lans = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

127 return plans ;

128 }

129

130

131 public stat ic Button getBackButton () {

132 return back ;

133 }

134

135 public stat ic Button getSaveButton () {

136 return save ;

137 }

138

139 public stat ic TextFie ld getStudentID () {

140 return sidTF ;

141 }

142

143 public stat ic ComboBox<Str ing> getPlans () {

144 return plansCB ;

145 }

146

102

147 public stat ic TextFie ld getFirstName () {

148 return fnameTF ;

149 }

150

151 public stat ic TextFie ld getLastName () {

152 return lnameTF ;

153 }

154

155 public stat ic TextFie ld getYear () {

156 return yearTF ;

157 }

158

159 public stat ic ComboBox<Str ing> getSemester () {

160 return semesterCB ;

161 }

162

163 public stat ic void updateComboBoxes () throws SQLException {

164 plansCB . getItems () . c l e a r () ;

165 ArrayList<Str ing> planNames = UI . populateComboBox (”SELECT

planName FROM plans ; ”) ;

166 C o l l e c t i o n s . s o r t (planNames) ;

167 plansCB . getItems () . addAll (planNames) ;

168 semesterCB . getItems () . c l e a r () ;

169 ArrayList<Str ing> semesterNames = UI . populateComboBox (”SELECT

semesterName FROM semester ; ”) ;

170 semesterCB . getItems () . addAll (semesterNames) ;

171 }

172

173

174

175 }

103

B.4 Plans

1 import j ava fx . scene . Scene ;

2 import j ava fx . scene . layout . * ;

3 import j ava fx . scene . pa int . Color ;

4 import j ava fx . scene . t ex t . Font ;

5 import j ava fx . scene . t ex t . FontWeight ;

6 import j ava fx . scene . t ex t . Text ;

7 import j ava fx . scene . c o n t r o l . * ;

8 import j ava fx . geometry . * ;

9

10 public class Plans {

11 // step 1 : d e f i n e your components (e . g . button , text , l a b e l)

12 private stat ic TextFie ld t fp l an s , t f yea r , t f h ou r s ;

13 private stat ic Button back , save ;

14 private stat ic Label plansL , yearL , hoursL ;

15 private stat ic Text text1 , t ext2 ;

16

17 public stat ic Scene getPage () {

18

19 // step 2 : Create panes

20

21 BorderPane pane = new BorderPane () ;

22 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

23

24

25 VBox vboxT = new VBox(20) ;

26 vboxT . setAl ignment (Pos .CENTER) ;

27 HBox hboxB = new HBox(20) ;

28 hboxB . setAl ignment (Pos .CENTER) ;

104

29 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

30 centerL . setAl ignment (Pos .CENTER) ;

31

32 // c r e a t e the components and add them to panes

33 t ext1 = new Text (20 , 20 , ” Plans ”) ;

34 t ext1 . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

35 t ext1 . s e t F i l l (Color .WHITE) ;

36

37 t ext2 = new Text (20 , 20 , ” Please ente r plan in fo rmat ion then

c l i c k save ”) ;

38 t ext2 . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

39 t ext2 . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

40

41

42 vboxT . getChi ldren () . addAll (text1 , t ext2) ;

43 vboxT . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

44 vboxT . s e tPre fHe ight (115) ;

45

46 double buttonWidth = 110 ;

47 back = new Button (”Back”) ;

48 back . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

49 back . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

50 back . setPrefWidth (buttonWidth) ;

51

52 save = new Button (”Save”) ;

53 save . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

54 save . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

55 save . setPrefWidth (buttonWidth) ;

56

105

57 hboxB . getChi ldren () . addAll (back , save) ;

58 hboxB . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

59 hboxB . s e tPre fHe ight (80) ;

60

61

62 plansL = new Label (”Plan Name : ”) ;

63 plansL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

64 plansL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

65

66 yearL = new Label (”Year : ”) ;

67 yearL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

68 yearL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

69

70

71 hoursL = new Label (”Hours : ”) ;

72 hoursL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

73 hoursL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

74

75 t f p l a n s = new TextFie ld () ;

76 t f h ou r s = new TextFie ld () ;

77 t f y e a r = new TextFie ld () ;

78 t f y e a r . setPromptText (”YYYY”) ;

79

80 // add pane to border pane

81 centerL . add (plansL , 0 , 0) ;

82 centerL . add (t fp l an s , 1 , 0) ;

83 centerL . add (yearL , 0 , 1) ;

84 centerL . add (t fyea r , 1 , 1) ;

85 centerL . add (hoursL , 0 , 2) ;

106

86 centerL . add (t fhours , 1 , 2) ;

87

88 // add gap

89 centerL . setVgap (20) ;

90 centerL . setHgap (20) ;

91

92 pane . se tCenter (centerL) ;

93 pane . setTop (vboxT) ;

94 pane . setBottom (hboxB) ;

95

96 I n s e t s x = new I n s e t s (0 , 0 , 0 , 0) ;

97 pane . setPadding (x) ;

98

99 Scene p lans = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

100 return plans ;

101 }

102

103 public stat ic Button getBackButton () {

104 return back ;

105 }

106

107 public stat ic Button getSaveButton () {

108 return save ;

109 }

110

111 public stat ic TextFie ld getPlanName () {

112 return t f p l a n s ;

113 }

114

115 public stat ic TextFie ld getYear () {

116 return t f y e a r ;

107

117 }

118

119 public stat ic TextFie ld getHours () {

120 return t f h ou r s ;

121 }

122 }

B.5 Courses

1 import j ava fx . scene . Scene ;

2 import j ava fx . scene . layout . * ;

3 import j ava fx . scene . pa int . Color ;

4 import j ava fx . scene . t ex t . Font ;

5 import j ava fx . scene . t ex t . FontWeight ;

6 import j ava fx . scene . t ex t . Text ;

7 import j ava fx . scene . c o n t r o l . * ;

8

9 import java . s q l . SQLException ;

10 import java . u t i l . ArrayList ;

11 import java . u t i l . C o l l e c t i o n s ;

12

13 import j ava fx . geometry . * ;

14

15 // import j ava fx . event . * ;

16 public class Courses {

17 // step 1 : d e f i n e your components (e . g . button , text , l a b e l)

18 private stat ic TextFie ld coursecodeTF , coursenumberTF , coursenameTF ,

credithoursTF ;

19 private stat ic ComboBox<Str ing> rotationCB , prereq1CB , prereq2CB ,

prereq3CB , coreqCB ;

20 private stat ic Button back , save ;

108

21 private stat ic Label coursecodeL , coursenumber , coursenameL ,

cred i thoursL , rotat ionL , prereq1L , prereq2L , prereq3L , coreqL ;

22 private stat ic Text text1 , t ext2 ;

23

24 public stat ic Scene getPage () throws SQLException {

25

26 // step 2 : Create panes

27

28 BorderPane pane = new BorderPane () ;

29 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

30

31 VBox vboxT = new VBox(20) ;

32 vboxT . setAl ignment (Pos .CENTER) ;

33 HBox hboxB = new HBox(20) ;

34 hboxB . setAl ignment (Pos .CENTER) ;

35 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

36 centerL . setAl ignment (Pos .CENTER) ;

37

38 // c r e a t e the components and add them to panes

39 t ext1 = new Text (20 , 20 , ” Courses ”) ;

40 t ext1 . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

41 t ext1 . s e t F i l l (Color .WHITE) ;

42

43

44 t ext2 = new Text (20 , 20 , ” Please ente r course in fo rmat ion then

c l i c k save . ”) ;

45 t ext2 . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

46 t ext2 . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

47

48 vboxT . getChi ldren () . addAll (text1 , t ext2) ;

109

49 vboxT . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

50 vboxT . s e tPre fHe ight (100) ;

51

52 double buttonWidth = 110 ;

53 back = new Button (”Back”) ;

54 back . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

55 back . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

56 back . setPrefWidth (buttonWidth) ;

57

58

59

60 save = new Button (”Save”) ;

61 save . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

62 save . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

63 save . setPrefWidth (buttonWidth) ;

64

65

66 hboxB . getChi ldren () . addAll (back , save) ;

67 hboxB . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

68 hboxB . s e tPre fHe ight (60) ;

69

70 coursecodeL = new Label (”Course Code : ”) ;

71 coursecodeL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

72 coursecodeL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

73

74 coursenumber = new Label (”Course Number : ”) ;

75 coursenumber . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14))

110

;

76 coursenumber . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

77

78 coursenameL = new Label (”Course Name : ”) ;

79 coursenameL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

80 coursenameL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

81

82 c red i thour sL = new Label (” Credit Hours : ”) ;

83 c red i thour sL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14))

;

84 c red i thour sL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

85

86

87 ro tat ionL = new Label (” Rotation : ”) ;

88 ro tat ionL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

89 ro tat ionL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

90

91 prereq1L = new Label (” P r e r e q u i s i t e 1 : ”) ;

92 prereq1L . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

93 prereq1L . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

94

95 prereq2L = new Label (” P r e r e q u i s i t e 2 : ”) ;

96 prereq2L . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

97 prereq2L . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

98

99 prereq3L = new Label (” P r e r e q u i s i t e 3 : ”) ;

100 prereq3L . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

101 prereq3L . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

102

103 coreqL = new Label (”Co=r e q u i s i t e : ”) ;

104 coreqL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

111

105 coreqL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

106

107

108 coursecodeTF = new TextFie ld () ;

109 coursenumberTF = new TextFie ld () ;

110 coursenameTF = new TextFie ld () ;

111 credithoursTF = new TextFie ld () ;

112 rotationCB = new ComboBox<Str ing >() ;

113 prereq1CB = new ComboBox<Str ing >() ;

114 prereq2CB = new ComboBox<Str ing >() ;

115 prereq3CB = new ComboBox<Str ing >() ;

116 coreqCB = new ComboBox<Str ing >() ;

117

118 // add pane to border pane

119 centerL . add (coursecodeL , 0 , 0) ;

120 centerL . add (coursecodeTF , 1 , 0) ;

121 centerL . add (coursenumber , 0 , 1) ;

122 centerL . add (coursenumberTF , 1 , 1) ;

123 centerL . add (coursenameL , 0 , 2) ;

124 centerL . add (coursenameTF , 1 , 2) ;

125 centerL . add (cred i thoursL , 0 , 3) ;

126 centerL . add (credithoursTF , 1 , 3) ;

127 centerL . add (rotat ionL , 0 , 4) ;

128 centerL . add (rotationCB , 1 , 4) ;

129 centerL . add (prereq1L , 0 , 5) ;

130 centerL . add (prereq1CB , 1 , 5) ;

131 centerL . add (prereq2L , 0 , 6) ;

132 centerL . add (prereq2CB , 1 , 6) ;

133 centerL . add (prereq3L , 0 , 7) ;

134 centerL . add (prereq3CB , 1 , 7) ;

135 centerL . add (coreqL , 0 , 8) ;

112

136 centerL . add (coreqCB , 1 , 8) ;

137

138 // add gap

139 centerL . setVgap (20) ;

140 centerL . setHgap (20) ;

141

142 pane . se tCenter (centerL) ;

143 pane . setTop (vboxT) ;

144 pane . setBottom (hboxB) ;

145

146 I n s e t s x = new I n s e t s (0 , 0 , 0 , 0) ;

147 pane . setPadding (x) ;

148

149 Scene p lans = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

150 return plans ;

151 }

152

153 public stat ic Button getBackButton () {

154 return back ;

155 }

156

157 public stat ic Button getSaveButton () {

158 return save ;

159 }

160

161 public stat ic TextFie ld getCourseCode () {

162 return coursecodeTF ;

163 }

164

165 public stat ic TextFie ld getCourseNumber () {

166 return coursenumberTF ;

113

167 }

168

169 public stat ic TextFie ld getCourseName () {

170 return coursenameTF ;

171 }

172

173 public stat ic TextFie ld getCreditHours () {

174 return credithoursTF ;

175 }

176

177 public stat ic ComboBox<Str ing> getRotat ion () {

178 return rotationCB ;

179 }

180

181 public stat ic ComboBox<Str ing> getPrereq1 () {

182 return prereq1CB ;

183 }

184

185 public stat ic ComboBox<Str ing> getPrereq2 () {

186 return prereq2CB ;

187 }

188

189 public stat ic ComboBox<Str ing> getPrereq3 () {

190 return prereq3CB ;

191 }

192

193 public stat ic ComboBox<Str ing> getCoreq () {

194 return coreqCB ;

195 }

196

197 public stat ic void updateComboBoxes () throws SQLException {

114

198 rotationCB . getItems () . c l e a r () ;

199 ArrayList<Str ing> rotationNames = UI . populateComboBox (”SELECT

rotationName FROM r o t a t i o n ; ”) ;

200 rotationCB . getItems () . addAll (rotationNames) ;

201 prereq1CB . getItems () . c l e a r () ;

202 prereq2CB . getItems () . c l e a r () ;

203 prereq3CB . getItems () . c l e a r () ;

204 coreqCB . getItems () . c l e a r () ;

205 ArrayList<Str ing> courseNames = UI . populateComboBox (”SELECT

courseName FROM cour s e s ; ”) ;

206 C o l l e c t i o n s . s o r t (courseNames) ;

207 prereq1CB . getItems () . addAll (courseNames) ;

208 prereq2CB . getItems () . addAll (courseNames) ;

209 prereq3CB . getItems () . addAll (courseNames) ;

210 coreqCB . getItems () . addAll (courseNames) ;

211 }

212 }

B.6 Plan Courses

1 import j ava fx . scene . Group ;

2 import j ava fx . scene . Scene ;

3 import j ava fx . scene . layout . * ;

4 import j ava fx . scene . pa int . Color ;

5 import j ava fx . scene . t ex t . Font ;

6 import j ava fx . scene . t ex t . FontWeight ;

7 import j ava fx . scene . t ex t . Text ;

8 import j ava fx . scene . c o n t r o l . * ;

9

10 import java . s q l . SQLException ;

11 import java . u t i l . ArrayList ;

115

12 import java . u t i l . C o l l e c t i o n s ;

13

14 import j ava fx . geometry . * ;

15

16 public class PlanCourses {

17 // step 1 : d e f i n e your components (e . g . button , text , l a b e l)

18 private stat ic ComboBox<Str ing> tfPlanCor , t fCourse , tfType ;

19 private stat ic Button back , save ;

20 private stat ic Label planL , courseL , majorL ;

21 private stat ic Text text1 , t ext2 ;

22

23 public stat ic Scene getPage () throws SQLException {

24

25 // step 2 : Create panes

26

27 BorderPane pane = new BorderPane () ;

28 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

29

30 VBox vboxT = new VBox(20) ;

31 vboxT . setAl ignment (Pos .CENTER) ;

32 HBox hboxB = new HBox(20) ;

33 hboxB . setAl ignment (Pos .CENTER) ;

34 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

35 centerL . setAl ignment (Pos .CENTER) ;

36

37 // c r e a t e the components and add them to panes

38 t ext1 = new Text (20 , 20 , ”Plan Courses ”) ;

39 t ext1 . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

40 t ext1 . s e t F i l l (Color .WHITE) ;

41

116

42 t ext2 = new Text (20 , 20 , ” Please s e l e c t the f o l l o w i n g then

c l i c k save ”) ;

43 t ext2 . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

44 t ext2 . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

45

46 vboxT . getChi ldren () . addAll (text1 , t ext2) ;

47 vboxT . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

48 vboxT . s e tPre fHe ight (115) ;

49

50 double buttonWidth = 110 ;

51 back = new Button (”Back”) ;

52 back . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

53 back . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

54 back . setPrefWidth (buttonWidth) ;

55

56 save = new Button (”Save”) ;

57 save . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

58 save . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

59 save . setPrefWidth (buttonWidth) ;

60

61 hboxB . getChi ldren () . addAll (back , save) ;

62 hboxB . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

63 hboxB . s e tPre fHe ight (80) ;

64

65 Scene scene2 = new Scene (new Group () , 450 , 250) ;

66

67 t fPlanCor = new ComboBox<Str ing >() ;

117

68 t fCourse = new ComboBox<Str ing >() ;

69 tfType = new ComboBox<Str ing >() ;

70

71 Group root = (Group) scene2 . getRoot () ;

72 root . ge tChi ldren () . add (tfPlanCor) ;

73

74 planL = new Label (” Plans : ”) ;

75 planL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

76 planL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

77

78 courseL = new Label (”Course : ”) ;

79 courseL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

80 courseL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

81

82 majorL = new Label (”Type : ”) ;

83 majorL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

84 majorL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

85

86

87 // add pane to border pane

88 centerL . add (planL , 0 , 0) ;

89 centerL . add (tfPlanCor , 1 , 0) ;

90 centerL . add (courseL , 0 , 1) ;

91 centerL . add (t fCourse , 1 , 1) ;

92 centerL . add (majorL , 0 , 2) ;

93 centerL . add (tfType , 1 , 2) ;

94

95 // add gap

96 centerL . setVgap (20) ;

97 centerL . setHgap (20) ;

98

118

99 pane . se tCenter (centerL) ;

100 pane . setTop (vboxT) ;

101 pane . setBottom (hboxB) ;

102

103 I n s e t s x = new I n s e t s (0 , 0 , 0 , 0) ;

104 pane . setPadding (x) ;

105

106 Scene p lans = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

107 return plans ;

108 }

109

110 public stat ic Button getBackButton () {

111 return back ;

112 }

113

114 public stat ic Button getSaveButton () {

115 return save ;

116 }

117

118 public stat ic ComboBox<Str ing> getPlan () {

119 return t fPlanCor ;

120 }

121

122 public stat ic ComboBox<Str ing> getCourse () {

123 return t fCourse ;

124 }

125

126 public stat ic ComboBox<Str ing> getType () {

127 return tfType ;

128 }

129

119

130 public stat ic void updateComboBoxes () throws SQLException {

131 t fPlanCor . getItems () . c l e a r () ;

132 ArrayList<Str ing> planNames = UI . populateComboBox (”SELECT

planName FROM plans ; ”) ;

133 C o l l e c t i o n s . s o r t (planNames) ;

134 t fPlanCor . getItems () . addAll (planNames) ;

135 t fCourse . getItems () . c l e a r () ;

136 ArrayList<Str ing> courseNames = UI . populateComboBox (”SELECT

courseName FROM cour s e s ; ”) ;

137 C o l l e c t i o n s . s o r t (courseNames) ;

138 t fCourse . getItems () . addAll (courseNames) ;

139 tfType . getItems () . c l e a r () ;

140 ArrayList<Str ing> types = UI . populateComboBox (”SELECT type

FROM type ; ”) ;

141 tfType . getItems () . addAll (types) ;

142 }

143 }

B.7 Student Courses

1 import j ava fx . scene . Scene ;

2 import j ava fx . scene . layout . * ;

3 import j ava fx . scene . pa int . Color ;

4 import j ava fx . scene . t ex t . Font ;

5 import j ava fx . scene . t ex t . FontWeight ;

6 import j ava fx . scene . t ex t . Text ;

7 import j ava fx . scene . c o n t r o l . * ;

8

9 import java . s q l . SQLException ;

10 import java . u t i l . ArrayList ;

11 import java . u t i l . C o l l e c t i o n s ;

120

12

13 import j ava fx . geometry . * ;

14

15 public class StudentCourses {

16 // step 1 : d e f i n e your components (e . g . button , text , l a b e l)

17 private stat ic TextFie ld tfstudID , t f y e a r ;

18 private stat ic Button back , save ;

19 private stat ic Label studentL , courseL , yearL , semesterL , gradeL ;

20 private stat ic Text text1 , t ext2 ;

21 private stat ic ComboBox<Str ing> courseB , semesterB , gradeB ;

22

23 public stat ic Scene getPage () throws SQLException {

24

25 // step 2 : Create panes

26

27 BorderPane pane = new BorderPane () ;

28 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

29

30 VBox vboxT = new VBox(20) ;

31 vboxT . setAl ignment (Pos .CENTER) ;

32 HBox hboxB = new HBox(20) ;

33 hboxB . setAl ignment (Pos .CENTER) ;

34 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

35 centerL . setAl ignment (Pos .CENTER) ;

36

37 // c r e a t e the components and add them to panes

38 t ext1 = new Text (20 , 20 , ” Student Courses ”) ;

39 t ext1 . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

40 t ext1 . s e t F i l l (Color .WHITE) ;

41

121

42

43 t ext2 = new Text (20 , 20 , ” Please ente r the f o l l o w i n g then

c l i c k save ”) ;

44 t ext2 . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

45 t ext2 . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

46

47

48 vboxT . getChi ldren () . addAll (text1 , t ext2) ;

49 vboxT . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

50 vboxT . s e tPre fHe ight (115) ;

51

52 double buttonWidth = 110 ;

53 back = new Button (”Back”) ;

54 back . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

55 back . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

56 back . setPrefWidth (buttonWidth) ;

57

58 save = new Button (”Save”) ;

59 save . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

60 save . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

61 save . setPrefWidth (buttonWidth) ;

62

63 hboxB . getChi ldren () . addAll (back , save) ;

64 hboxB . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

65 hboxB . s e tPre fHe ight (80) ;

66

67 studentL = new Label (” Student ID : ”) ;

122

68 studentL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

69 studentL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

70

71 courseL = new Label (”Course : ”) ;

72 courseL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

73 courseL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

74

75 yearL = new Label (”Year : ”) ;

76 yearL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

77 yearL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

78

79 semesterL = new Label (” Semester : ”) ;

80 semesterL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

81 semesterL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

82

83 gradeL = new Label (”Grade”) ;

84 gradeL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

85 gradeL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

86

87

88 t f s tudID = new TextFie ld () ;

89 t f y e a r = new TextFie ld () ;

90 t f y e a r . setPromptText (”YYYY”) ;

91 courseB = new ComboBox<Str ing >() ;

92 semesterB = new ComboBox<Str ing >() ;

93 gradeB = new ComboBox<Str ing >() ;

94 gradeB . getItems () . addAll (”A” , ”B” , ”C” , ”D” , ”F” , ” I ” , ”W”) ;

95

96 // add pane to border pane

97 centerL . add (studentL , 0 , 0) ;

98 centerL . add (tfstudID , 1 , 0) ;

123

99 centerL . add (courseL , 0 , 1) ;

100 centerL . add (courseB , 1 , 1) ;

101 centerL . add (yearL , 0 , 2) ;

102 centerL . add (t fyea r , 1 , 2) ;

103 centerL . add (semesterL , 0 , 3) ;

104 centerL . add (semesterB , 1 , 3) ;

105 centerL . add (gradeL , 0 , 4) ;

106 centerL . add (gradeB , 1 , 4) ;

107

108 // add gap

109 centerL . setVgap (20) ;

110 centerL . setHgap (20) ;

111

112 pane . se tCenter (centerL) ;

113 pane . setTop (vboxT) ;

114 pane . setBottom (hboxB) ;

115

116 I n s e t s x = new I n s e t s (0 , 0 , 0 , 0) ;

117 pane . setPadding (x) ;

118

119 Scene studentCourses = new Scene (pane , 600 , 600) ; // c r e a t e and

s e t

120 return studentCourses ;

121 }

122

123 public stat ic Button getBackButton () {

124 return back ;

125 }

126

127 public stat ic Button getSaveButton () {

128 return save ;

124

129 }

130

131 public stat ic TextFie ld getStudentID () {

132 return t f s tudID ;

133 }

134

135 public stat ic ComboBox<Str ing> getCourse () {

136 return courseB ;

137 }

138

139 public stat ic TextFie ld getYear () {

140 return t f y e a r ;

141 }

142

143 public stat ic ComboBox<Str ing> getSemester () {

144 return semesterB ;

145 }

146

147 public stat ic ComboBox<Str ing> getGrade () {

148 return gradeB ;

149 }

150

151 public stat ic void updateComboBoxes () throws SQLException {

152 courseB . getItems () . c l e a r () ;

153 ArrayList<Str ing> courseNames = UI . populateComboBox (”SELECT

courseName FROM cour s e s ; ”) ;

154 C o l l e c t i o n s . s o r t (courseNames) ;

155 courseB . getItems () . addAll (courseNames) ;

156 semesterB . getItems () . c l e a r () ;

157 ArrayList<Str ing> semesterNames = UI . populateComboBox (”SELECT

semesterName FROM semester ; ”) ;

125

158 semesterB . getItems () . addAll (semesterNames) ;

159 }

160 }

B.8 Reports

1 import j ava fx . scene . Scene ;

2 import j ava fx . scene . layout . * ;

3 import j ava fx . scene . pa int . Color ;

4 import j ava fx . scene . t ex t . * ;

5 import j ava fx . scene . c o n t r o l . * ;

6 import j ava fx . geometry . * ;

7

8 public class Reports {

9 // step 1 : d e f i n e your components (e . g . button , text , l a b e l)

10 private stat ic TextFie ld studentId ;

11 private stat ic Button backbtn , reportbtn ;

12 private stat ic Label studentIdL ;

13 private stat ic Text t i t l e L , t i t l eAdd ;

14

15 public stat ic Scene getPage () {

16

17 // step 2 : Create panes

18

19 BorderPane pane = new BorderPane () ;

20 pane . setBackground (new Background (new BackgroundFi l l (Color .

WHITE, null , null))) ;

21

22 VBox vboxT = new VBox(20) ;

23 vboxT . setAl ignment (Pos .CENTER) ;

24 HBox hboxB = new HBox(20) ;

126

25 hboxB . setAl ignment (Pos .CENTER) ;

26 GridPane centerL = new GridPane () ; // c r e a t e and s e t pane

27 centerL . setAl ignment (Pos .CENTER) ;

28

29 // c r e a t e the components and add them to panes

30 t i t l e L = new Text (20 , 20 , ” Reports ”) ;

31 t i t l e L . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 25)) ;

32 t i t l e L . s e t F i l l (Color .WHITE) ;

33

34 t i t l eAdd = new Text (”To generate r epor t ente r student ID and

c l i c k generate r epor t . ”) ;

35 t i t l eAdd . setFont (Font . f ont (”Roboto” , FontWeight .NORMAL, 14)) ;

36 t i t l eAdd . s e t F i l l (Color . rgb (0 , 56 , 130)) ;

37

38 vboxT . getChi ldren () . addAll (t i t l e L , t i t l eAdd) ;

39 vboxT . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

40 vboxT . s e tPre fHe ight (115) ;

41

42 double buttonWidth = 110 ;

43 backbtn = new Button (”Back”) ;

44 backbtn . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

45 backbtn . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

46 backbtn . setPrefWidth (buttonWidth) ;

47

48 reportbtn = new Button (” Generate Report”) ;

49 reportbtn . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 12)) ;

50 reportbtn . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

51 reportbtn . setPrefWidth (buttonWidth) ;

52

127

53

54 hboxB . getChi ldren () . addAll (backbtn , reportbtn) ;

55 hboxB . setBackground (new Background (new BackgroundFi l l (Color .

rgb (194 , 166 , 114 , 0 . 6 4) , CornerRadi i .EMPTY, new I n s e t s (0 ,

0 , 0 , 0)))) ;

56 hboxB . s e tPre fHe ight (80) ;

57

58 studentIdL = new Label (” Student ID : ”) ;

59 studentIdL . setFont (Font . f ont (”Roboto” , FontWeight .BOLD, 14)) ;

60 studentIdL . s e t T e x t F i l l (Color . rgb (0 , 56 , 130)) ;

61

62 s tudentId = new TextFie ld () ;

63

64 // add pane to border pane

65 centerL . add (studentIdL , 0 , 0) ;

66 centerL . add (studentId , 1 , 0) ;

67

68 // add gap

69 centerL . setVgap (10) ;

70 centerL . setHgap (10) ;

71

72 pane . se tCenter (centerL) ;

73 pane . setTop (vboxT) ;

74 pane . setBottom (hboxB) ;

75

76 I n s e t s x = new I n s e t s (0 , 0 , 0 , 0) ;

77 pane . setPadding (x) ;

78

79 Scene scene = new Scene (pane , 600 , 600) ; // c r e a t e and s e t

80 return scene ;

81 }

128

82

83 public stat ic Button getBackButton () {

84 return backbtn ;

85 }

86

87 public stat ic Button getGenerateButton () {

88 return reportbtn ;

89 }

90

91 public stat ic TextFie ld getStudentID () {

92 return s tudentId ;

93 }

94

95 public stat ic void updateComboBoxes () {

96

97 }

98 }

B.9 UI Class

1 import java . s q l . Connection ;

2 import java . s q l . Resu l tSet ;

3 import java . s q l . SQLException ;

4 import java . u t i l . ArrayList ;

5

6 import org . apache . l o g 4 j . Logger ;

7 import org . apache . l o g 4 j . va r i a . NullAppender ;

8

9 import com . zaxxer . h i k a r i . Hikar iDataSource ;

10

11

129

12

13 import j ava fx . a p p l i c a t i o n . App l i ca t ion ;

14 import j ava fx . scene . Scene ;

15 import j ava fx . scene . c o n t r o l . A le r t ;

16 import j ava fx . scene . c o n t r o l . A le r t . AlertType ;

17 import j ava fx . scene . image . Image ;

18 import j ava fx . s tage . Stage ;

19

20 public class UI extends Appl i ca t ion {

21

22 private Scene loginPage , mainPage , studentsPage , plansPage ,

coursesPage , planCoursesPage , studentCoursesPage ,

23 reportsPage ;

24 public stat ic St r ing sq lUser = ”” , sq lPas s = ”” ;

25

26 // a p p l i c a t i o n launch method

27 public stat ic void main (St r ing [] a rgs) {

28 // i n i t i a l i z e h i k a r i l o g g e r and s e t to s i l e n t

29 Logger . getRootLogger () . addAppender (new NullAppender ()) ;

30 // launch a p p l i c a t i o n

31 Appl i ca t ion . launch (args) ;

32 }

33

34 @Override

35 public void s t a r t (Stage primaryStage) throws Exception {

36 // i n i t i a t e a l l page s cene s in memory

37 log inPage = Login . getPage () ;

38 mainPage = MainPage . getPage () ;

39 studentsPage = Students . getPage () ;

40 plansPage = Plans . getPage () ;

41 coursesPage = Courses . getPage () ;

130

42 planCoursesPage = PlanCourses . getPage () ;

43 studentCoursesPage = StudentCourses . getPage () ;

44 reportsPage = Reports . getPage () ;

45

46 // s e t primary s tage i n f o and show l o g i n page

47 // primaryStage () ;

48

49 primaryStage . s e t T i t l e (” Co l l ege Class Scheduler ”) ;

50 primaryStage . s e tScene (log inPage) ;

51

52

53

54 Image i con = new Image (”cap 1 . png”) ;

55 primaryStage . g e t I cons () . add (i con) ;

56

57 primaryStage . show () ;

58

59

60

61

62 // event : username ente r key

63 Login . getUser () . setOnAction (e => {

64 l o g i n (primaryStage) ;

65 }) ;

66

67 // event : password ente r key

68 Login . getPass () . setOnAction (e => {

69 l o g i n (primaryStage) ;

70 }) ;

71

72 // event : l o g i n button

131

73 Login . getLoginButton () . setOnAction (e => {

74 l o g i n (primaryStage) ;

75 }) ;

76

77 // event : s i gn out from main page

78 MainPage . getSignoutButton () . setOnAction (e => {

79 primaryStage . s e tScene (log inPage) ;

80 }) ;

81

82 // event : s tudents button from main page

83 MainPage . getStudentsButton () . setOnAction (e => {

84 try {

85 Students . updateComboBoxes () ;

86 } catch (SQLException e1) {

87 e1 . pr intStackTrace () ;

88 }

89 primaryStage . s e tScene (studentsPage) ;

90 }) ;

91

92 // event : save button from students page

93 Students . getSaveButton () . setOnAction (e => {

94 try {

95 sq lSave (”INSERT INTO students (studentID ,

f irstName , lastName , enrol lmentYear ,

planID , semesterID) VALUES (”

96 + Students . getStudentID () .

getText () + ” , ’ ” +

Students . getFirstName () .

getText () + ” ’ , ’ ”

97 + Students . getLastName () .

getText () + ” ’ , ” +

132

Students . getYear () . getText

() + ” , ”

98 + getID (”SELECT planID FROM

plans WHERE planName=’” +

Students . getPlans () .

getValue () + ” ’ ; ”)

99 + ” , ” + getID (”SELECT

semesterID FROM semester

WHERE semesterName=’”

100 + Students .

getSemester

() .

getValue ()

+ ” ’ ; ”)

101 + ”) ; ”) ;

102 } catch (SQLException eStudents) {

103 eStudents . pr intStackTrace () ;

104 }

105

106 Students . getStudentID () . c l e a r () ;

107 Students . getPlans () . setValue (null) ;

108 Students . getFirstName () . c l e a r () ;

109 Students . getLastName () . c l e a r () ;

110 Students . getYear () . c l e a r () ;

111 Students . getSemester () . setValue (null) ;

112

113 try {

114 Students . updateComboBoxes () ;

115 } catch (SQLException e1) {

116 e1 . pr intStackTrace () ;

117 }

133

118 }) ;

119

120 // event : back button from students page

121 Students . getBackButton () . setOnAction (e => {

122 primaryStage . s e tScene (mainPage) ;

123 Students . getStudentID () . c l e a r () ;

124 Students . getPlans () . setValue (null) ;

125 Students . getFirstName () . c l e a r () ;

126 Students . getLastName () . c l e a r () ;

127 Students . getYear () . c l e a r () ;

128 Students . getSemester () . setValue (null) ;

129 }) ;

130

131 // event : p lans button from main page

132 MainPage . getPlansButton () . setOnAction (e => {

133 primaryStage . s e tScene (plansPage) ;

134 }) ;

135

136 // event : save button from plans page

137 Plans . getSaveButton () . setOnAction (e => {

138 try {

139 sq lSave (”INSERT INTO plans (planName , planYear

, planHours) VALUES (’ ” + Plans .

getPlanName () . getText ()

140 + ” ’ , ” + Plans . getYear () .

getText () + ” , ” + Plans .

getHours () . getText () + ”) ;

”) ;

141 } catch (SQLException eCourses) {

142 eCourses . pr intStackTrace () ;

143 }

134

144

145 Plans . getPlanName () . c l e a r () ;

146 Plans . getYear () . c l e a r () ;

147 Plans . getHours () . c l e a r () ;

148 }) ;

149

150 // event : back button from plans page

151 Plans . getBackButton () . setOnAction (e => {

152 primaryStage . s e tScene (mainPage) ;

153 Plans . getPlanName () . c l e a r () ;

154 Plans . getYear () . c l e a r () ;

155 Plans . getHours () . c l e a r () ;

156 }) ;

157

158 // event : cour s e s button from main page

159 MainPage . getCoursesButton () . setOnAction (e => {

160 try {

161 Courses . updateComboBoxes () ;

162 } catch (SQLException e1) {

163 e1 . pr intStackTrace () ;

164 }

165 primaryStage . s e tScene (coursesPage) ;

166 }) ;

167

168 // event : save button from cour s e s page

169 Courses . getSaveButton () . setOnAction (e => {

170 try {

171 // op t i ona l va lue s check

172 St r ing prereq1 , prereq2 , prereq3 , coreq ;

173 i f (Courses . getPrereq1 () . getValue () == null) {

174 prereq1 = ”NULL” ;

135

175 } else {

176 prereq1 = St r ing . valueOf (getID (”SELECT

courseID FROM cour s e s WHERE

courseName=’”

177 + Courses . getPrereq1 ()

. getValue () + ” ’ ; ”

)) ;

178 }

179 i f (Courses . getPrereq2 () . getValue () == null) {

180 prereq2 = ”NULL” ;

181 } else {

182 prereq2 = St r ing . valueOf (getID (”SELECT

courseID FROM cour s e s WHERE

courseName=’”

183 + Courses . getPrereq2 ()

. getValue () + ” ’ ; ”

)) ;

184 }

185 i f (Courses . getPrereq3 () . getValue () == null) {

186 prereq3 = ”NULL” ;

187 } else {

188 prereq3 = St r ing . valueOf (getID (”SELECT

courseID FROM cour s e s WHERE

courseName=’”

189 + Courses . getPrereq3 ()

. getValue () + ” ’ ; ”

)) ;

190 }

191 i f (Courses . getCoreq () . getValue () == null) {

192 coreq = ”NULL” ;

193 } else {

136

194 coreq = Str ing . valueOf (getID (

195 ”SELECT courseID FROM

cour s e s WHERE

courseName=’” +

Courses . getCoreq ()

. getValue () + ” ’ ; ”

)) ;

196 }

197

198 sq lSave (”INSERT INTO cour s e s (courseCode ,

courseNumber , courseName , courseHours ,

rotat ionID , prereq1 , prereq2 , prereq3 ,

coreq) VALUES (’ ”

199 + Courses . getCourseCode () .

getText () + ” ’ , ” +

Courses . getCourseNumber () .

getText () + ” , ’ ”

200 + Courses . getCourseName () .

getText () + ” ’ , ” +

Courses . getCreditHours () .

getText () + ” , ”

201 + getID (”SELECT rotat ionID

FROM r o t a t i o n WHERE

rotationName=’”

202 + Courses .

getRotat ion

() .

getValue ()

+ ” ’ ; ”)

203 + ” , ” + prereq1 + ” , ” +

prereq2 + ” , ” + prereq3 +

137

” , ” + coreq + ”) ; ”) ;

204 } catch (SQLException eCourses) {

205 eCourses . pr intStackTrace () ;

206 }

207

208 Courses . getCourseCode () . c l e a r () ;

209 Courses . getCourseNumber () . c l e a r () ;

210 Courses . getCourseName () . c l e a r () ;

211 Courses . getCreditHours () . c l e a r () ;

212 Courses . getRotat ion () . setValue (null) ;

213 Courses . getPrereq1 () . setValue (null) ;

214 Courses . getPrereq2 () . setValue (null) ;

215 Courses . getPrereq3 () . setValue (null) ;

216 Courses . getCoreq () . setValue (null) ;

217

218 try {

219 Courses . updateComboBoxes () ;

220 } catch (SQLException e1) {

221 e1 . pr intStackTrace () ;

222 }

223 }) ;

224

225 // event : back button from cour s e s page

226 Courses . getBackButton () . setOnAction (e => {

227 primaryStage . s e tScene (mainPage) ;

228 Courses . getCourseCode () . c l e a r () ;

229 Courses . getCourseNumber () . c l e a r () ;

230 Courses . getCourseName () . c l e a r () ;

231 Courses . getCreditHours () . c l e a r () ;

232 Courses . getRotat ion () . setValue (null) ;

233 Courses . getPrereq1 () . setValue (null) ;

138

234 Courses . getPrereq2 () . setValue (null) ;

235 Courses . getPrereq3 () . setValue (null) ;

236 Courses . getCoreq () . setValue (null) ;

237 }) ;

238

239 // event : plan cour s e s button from main page

240 MainPage . getPlanCoursesButton () . setOnAction (e => {

241 try {

242 PlanCourses . updateComboBoxes () ;

243 } catch (SQLException e1) {

244 e1 . pr intStackTrace () ;

245 }

246 primaryStage . s e tScene (planCoursesPage) ;

247 }) ;

248

249 // event : save button from plan cour s e s page

250 PlanCourses . getSaveButton () . setOnAction (e => {

251 try {

252 sq lSave (”INSERT INTO p l a n s c o u r s e s (courseID ,

planID , typeID) VALUES (”

253 + getID (”SELECT courseID FROM

cour s e s WHERE courseName=’

” + PlanCourses . getCourse

() . getValue ()

254 + ” ’ ; ”)

255 + ” , ”

256 + getID (”SELECT planID FROM

plans WHERE planName=’” +

PlanCourses . getPlan () .

getValue () + ” ’ ; ”)

257 + ” , ” + getID (”SELECT typeID

139

FROM type WHERE type=’” +

PlanCourses . getType () .

getValue () + ” ’ ; ”)

258 + ”) ; ”) ;

259 } catch (SQLException eCourses) {

260 eCourses . pr intStackTrace () ;

261 }

262

263 PlanCourses . getPlan () . setValue (null) ;

264 PlanCourses . getCourse () . setValue (null) ;

265 PlanCourses . getType () . setValue (null) ;

266

267 try {

268 PlanCourses . updateComboBoxes () ;

269 } catch (SQLException e1) {

270 e1 . pr intStackTrace () ;

271 }

272 }) ;

273

274 // event : back button from plan cour s e s page

275 PlanCourses . getBackButton () . setOnAction (e => {

276 primaryStage . s e tScene (mainPage) ;

277 PlanCourses . getPlan () . setValue (null) ;

278 PlanCourses . getCourse () . setValue (null) ;

279 PlanCourses . getType () . setValue (null) ;

280 }) ;

281

282 // event : student cour s e s button from main page

283 MainPage . getStudentCoursesButton () . setOnAction (e => {

284 try {

285 StudentCourses . updateComboBoxes () ;

140

286 } catch (SQLException e1) {

287 e1 . pr intStackTrace () ;

288 }

289 primaryStage . s e tScene (studentCoursesPage) ;

290 }) ;

291

292 // event : save button from student cour s e s page

293 StudentCourses . getSaveButton () . setOnAction (e => {

294 try {

295 sq lSave (”INSERT INTO s t u d e n t s c o u r s e s (

studentID , courseID , year , semesterID ,

grade) VALUES (”

296 + StudentCourses . getStudentID

() . getText () + ” , ”

297 + getID (”SELECT courseID FROM

cour s e s WHERE courseName=’

”

298 +

StudentCourses

. getCourse

() .

getValue ()

+ ” ’ ; ”)

299 + ” , ” + StudentCourses .

getYear () . getText () + ” , ”

300 + getID (”SELECT semesterID

FROM semester WHERE

semesterName=’”

301 +

StudentCourses

.

141

getSemester

() .

getValue ()

+ ” ’ ; ”)

302 + ” , ’ ” + StudentCourses .

getGrade () . getValue () + ”

’) ; ”) ;

303 } catch (SQLException eCourses) {

304 eCourses . pr intStackTrace () ;

305 }

306

307 StudentCourses . getStudentID () . c l e a r () ;

308 StudentCourses . getCourse () . setValue (null) ;

309 StudentCourses . getYear () . c l e a r () ;

310 StudentCourses . getSemester () . setValue (null) ;

311 StudentCourses . getGrade () . setValue (null) ;

312

313 try {

314 StudentCourses . updateComboBoxes () ;

315 } catch (SQLException e1) {

316 e1 . pr intStackTrace () ;

317 }

318 }) ;

319

320 // event : back button from student cour s e s page

321 StudentCourses . getBackButton () . setOnAction (e => {

322 primaryStage . s e tScene (mainPage) ;

323 StudentCourses . getStudentID () . c l e a r () ;

324 StudentCourses . getCourse () . setValue (null) ;

325 StudentCourses . getYear () . c l e a r () ;

326 StudentCourses . getSemester () . setValue (null) ;

142

327 StudentCourses . getGrade () . setValue (null) ;

328 }) ;

329

330 // event : r e p o r t s button from main page

331 MainPage . getReportsButton () . setOnAction (e => {

332 primaryStage . s e tScene (reportsPage) ;

333 }) ;

334

335 // event : generate r epor t button from r e p o r t s page

336 Reports . getGenerateButton () . setOnAction (e => {

337 St r ing c o u r s e s S t r i n g = ”” ;

338 try {

339 ReportData data = new ReportData (I n t e g e r .

pa r s e In t (Reports . getStudentID () . getText ())

) ;

340 for (int i = 0 ; i < data . getRemainingCourses ()

. s i z e () ; i++) {

341 c o u r s e s S t r i n g = c o u r s e s S t r i n g + data .

getRemainingCourses () . get (i) .

getCourseCode () + ” ”

342 + data .

getRemainingCourses

() . get (i) .

getCourseNumber ()

+ ” = ”

343 + data .

getRemainingCourses

() . get (i) .

getCourseName () +

”\n” ;

344 }

143

345 Aler t a l e r t = new Aler t (AlertType .INFORMATION)

;

346 a l e r t . s e t T i t l e (”Report”) ;

347 a l e r t . setHeaderText (data . getFName () + ” ” +

data . getLName () + ” ’ s Remaining Courses : ”)

;

348 a l e r t . setContentText (c o u r s e s S t r i n g) ;

349 a l e r t . showAndWait () ;

350 } catch (SQLException e1) {

351 e1 . pr intStackTrace () ;

352 }

353 Reports . getStudentID () . c l e a r () ;

354 }) ;

355

356 // event : back button from r e p o r t s page

357 Reports . getBackButton () . setOnAction (e => {

358 primaryStage . s e tScene (mainPage) ;

359 Reports . getStudentID () . c l e a r () ;

360 }) ;

361 // catch s e r v e r o f f l i n e

362 }

363

364 // handles user / pass f o r l og in , throws e r r o r i f i n c o r r e c t

365 public stat ic void s e tLog in In f o (S t r ing user , S t r ing pass) {

366 sq lUse r = user ;

367 sq lPas s = pass ;

368 }

369

370 public void l o g i n (Stage primaryStage) {

371 s e tLog in In f o (Login . getUser () . getText () , Login . getPass () .

getText ()) ;

144

372 try {

373 HikariDataSource log inTestDs = new HikariDataSource () ;

374 log inTestDs . setJdbcUrl (” jdbc : mysql : // l o c a l h o s t :3306/

c o l l e g e c l a s s s c h e d u l e r ”) ;

375 log inTestDs . setUsername (sq lUser) ;

376 log inTestDs . setPassword (sq lPas s) ;

377 Connection l og inTes t = log inTestDs . getConnect ion () ;

378 primaryStage . s e tScene (mainPage) ;

379 Login . getUser () . c l e a r () ;

380 Login . getPass () . c l e a r () ;

381 l o g inTes t . c l o s e () ;

382 log inTestDs . c l o s e () ;

383 } catch (SQLException e) {

384 Aler t a l e r t = new Aler t (AlertType .ERROR) ;

385 a l e r t . s e t T i t l e (” I n v a l i d Login ”) ;

386 a l e r t . setHeaderText (null) ;

387 a l e r t . setContentText (” I n c o r r e c t username or password ! ”

) ;

388 a l e r t . showAndWait () ;

389 }

390 }

391

392 public stat ic ArrayList<Str ing> populateComboBox (St r ing query) throws

SQLException {

393 Connection con = ConnectionPool . getConnect ion () ;

394 Resu l tSet r e s u l t = con . createStatement () . executeQuery (query) ;

395 ArrayList<Str ing> l i s t = new ArrayList<Str ing >() ;

396 while (r e s u l t . next ()) {

397 l i s t . add (r e s u l t . g e t S t r i n g (1)) ;

398 }

399 con . c l o s e () ;

145

400 return l i s t ;

401 }

402

403 public stat ic int getID (St r ing query) throws SQLException {

404 Connection con = ConnectionPool . getConnect ion () ;

405 Resu l tSet r e s u l t = con . createStatement () . executeQuery (query) ;

406 r e s u l t . next () ;

407 int id = r e s u l t . g e t In t (1) ;

408 con . c l o s e () ;

409 return id ;

410 }

411

412 public stat ic void sq lSave (S t r ing query) throws SQLException {

413 Connection con = ConnectionPool . getConnect ion () ;

414 con . createStatement () . executeUpdate (query) ;

415 con . c l o s e () ;

416 }

417

418 }

B.10 Report Data Class

1 import java . s q l . Connection ;

2 import java . s q l . Resu l tSet ;

3 import java . s q l . SQLException ;

4 import java . u t i l . ArrayList ;

5

6 public class ReportData {

7 int studentID ;

8 St r ing fName , lName ;

9 int enrol lmentYear ;

146

10 int planID ;

11 int semesterID ;

12 ArrayList<courseData> remainingCourses = new ArrayList<courseData >() ;

13

14 public ReportData (int studentID) throws SQLException {

15 // f i l l s tudent data

16 this . studentID = studentID ;

17 Connection con = ConnectionPool . getConnect ion () ;

18 Resu l tSet r e s u l t = con . createStatement () . executeQuery (”SELECT

* FROM students WHERE studentID = ” + this . studentID) ;

19 while (r e s u l t . next ()) {

20 fName = r e s u l t . g e t S t r i n g (2) ;

21 lName = r e s u l t . g e t S t r i n g (3) ;

22 enrol lmentYear = r e s u l t . g e t In t (4) ;

23 planID = r e s u l t . g e t In t (5) ;

24 semesterID = r e s u l t . g e t In t (6) ;

25 }

26 con . c l o s e () ;

27

28 // f i l l remainingCourses

29 Connection con2 = ConnectionPool . getConnect ion () ;

30 Resu l tSet r e s u l t 2 = con2 . createStatement () . executeQuery (

31 ”SELECT * FROM plans cour s e s , cou r s e s WHERE

p l a n s c o u r s e s . courseID NOT IN (SELECT

courseID FROM s t u d e n t s c o u r s e s WHERE

studentID = ”

32 + this . studentID

33 + ” AND (grade = \”A\” OR

grade = \”B\” OR grade =

\”C\”)) AND PlanID = (

SELECT planID from

147

s tudents WHERE studentID =

”

34 + this . studentID + ”) AND

p l a n s c o u r s e s . courseID =

cour s e s . courseID ; ”) ;

35 while (r e s u l t 2 . next ()) {

36 courseData newCourse = new courseData () ;

37 newCourse . setCourseID (r e s u l t 2 . g e t In t (4)) ;

38 newCourse . setCourseCode (r e s u l t 2 . g e t S t r i n g (5)) ;

39 newCourse . setCourseNumber (r e s u l t 2 . g e t In t (6)) ;

40 newCourse . setCourseName (r e s u l t 2 . g e t S t r i n g (7)) ;

41 newCourse . se tCred i tHours (r e s u l t 2 . g e t In t (8)) ;

42 newCourse . setRotat ionID (r e s u l t 2 . g e t In t (9)) ;

43 newCourse . s e tPrereq1 (r e s u l t 2 . g e t In t (10)) ;

44 newCourse . s e tPrereq2 (r e s u l t 2 . g e t In t (11)) ;

45 newCourse . s e tPrereq3 (r e s u l t 2 . g e t In t (12)) ;

46 newCourse . setCoreq (r e s u l t 2 . g e t In t (13)) ;

47 remainingCourses . add (newCourse) ;

48 }

49 con2 . c l o s e () ;

50 }

51

52 public int getStudentID () {

53 return studentID ;

54 }

55

56 public St r ing getFName () {

57 return fName ;

58 }

59

60 public St r ing getLName () {

148

61 return lName ;

62 }

63

64 public int getEnrol lmentYear () {

65 return enrol lmentYear ;

66 }

67

68 public int getPlanID () {

69 return planID ;

70 }

71

72 public int getSemesterID () {

73 return semesterID ;

74 }

75

76 public ArrayList<courseData> getRemainingCourses () {

77 return remainingCourses ;

78 }

79

80 public class courseData {

81 private int courseID ;

82 private St r ing courseCode ;

83 private int courseNumber ;

84 private St r ing courseName ;

85 private int c red i tHours ;

86 private int rotat ionID ;

87 private int prereq1 , prereq2 , prereq3 , coreq ;

88

89 private courseData () {

90

91 }

149

92

93 public int getCourseID () {

94 return courseID ;

95 }

96

97 public void setCourseID (int courseID) {

98 this . courseID = courseID ;

99 }

100

101 public St r ing getCourseCode () {

102 return courseCode ;

103 }

104

105 public void setCourseCode (St r ing courseCode) {

106 this . courseCode = courseCode ;

107 }

108

109 public int getCourseNumber () {

110 return courseNumber ;

111 }

112

113 public void setCourseNumber (int courseNumber) {

114 this . courseNumber = courseNumber ;

115 }

116

117 public St r ing getCourseName () {

118 return courseName ;

119 }

120

121 public void setCourseName (St r ing courseName) {

122 this . courseName = courseName ;

150

123 }

124

125 public int getCreditHours () {

126 return c red i tHours ;

127 }

128

129 public void setCred i tHours (int c red i tHours) {

130 this . c r ed i tHours = cred i tHours ;

131 }

132

133 public int getRotationID () {

134 return rotat ionID ;

135 }

136

137 public void setRotat ionID (int rotat ionID) {

138 this . ro tat ionID = rotat ionID ;

139 }

140

141 public int getPrereq1 () {

142 return prereq1 ;

143 }

144

145 public void s e tPrereq1 (int prereq1) {

146 this . prereq1 = prereq1 ;

147 }

148

149 public int getPrereq2 () {

150 return prereq2 ;

151 }

152

153 public void s e tPrereq2 (int prereq2) {

151

154 this . prereq2 = prereq2 ;

155 }

156

157 public int getPrereq3 () {

158 return prereq3 ;

159 }

160

161 public void s e tPrereq3 (int prereq3) {

162 this . prereq3 = prereq3 ;

163 }

164

165 public int getCoreq () {

166 return coreq ;

167 }

168

169 public void setCoreq (int coreq) {

170 this . coreq = coreq ;

171 }

172

173 }

174 }

B.11 Connection Pool Class

1 import java . s q l . Connection ;

2 import java . s q l . SQLException ;

3

4 import com . zaxxer . h i k a r i . H ikar iConf ig ;

5 import com . zaxxer . h i k a r i . Hikar iDataSource ;

6

7 public class ConnectionPool {

152

8

9 private stat ic Hikar iConf ig c o n f i g = new Hikar iConf ig () ;

10 private stat ic HikariDataSource ds ;

11

12 stat ic {

13 c o n f i g . setJdbcUrl (” jdbc : mysql : // l o c a l h o s t :3306/

c o l l e g e c l a s s s c h e d u l e r ”) ;

14 c o n f i g . setUsername (UI . sq lUse r) ;

15 c o n f i g . setPassword (UI . sq lPas s) ;

16 c o n f i g . addDataSourceProperty (” cachePrepStmts ” , ” t rue ”) ;

17 c o n f i g . addDataSourceProperty (” prepStmtCacheSize ” , ”250”) ;

18 c o n f i g . addDataSourceProperty (” prepStmtCacheSqlLimit ” , ”2048”) ;

19 ds = new HikariDataSource (c o n f i g) ;

20 }

21

22 public stat ic Connection getConnect ion () throws SQLException {

23 return ds . getConnect ion () ;

24 }

25

26 private ConnectionPool () {

27 }

28 }

B.12 MySQL Database Creation Code

1 CREATE DATABASE IF NOT EXISTS c o l l e g e c l a s s s c h e d u l e r ;

2 USE c o l l e g e c l a s s s c h e d u l e r ;

3 CREATE TABLE plans (planID int unsigned NOT NULL AUTO INCREMENT, planName

varchar (45) , planYear year (4) , planHours int , PRIMARY KEY(planID)) ;

4 CREATE TABLE semester (semesterID int unsigned NOT NULL, semesterName varchar

(45) , PRIMARY KEY(semesterID)) ;

153

5 CREATE TABLE s tudents (studentID int unsigned NOT NULL, f i r stName varchar (45) ,

lastName varchar (45) , enrol lmentYear year (4) , planID int unsigned ,

semesterID int unsigned , PRIMARY KEY(studentID) ,FOREIGN KEY(planID)

REFERENCES plans (planID) ON DELETE SET NULL ON UPDATE CASCADE, FOREIGN KEY

(semesterID) REFERENCES semester (semesterID)ON DELETE CASCADE ON UPDATE

CASCADE) ;

6 CREATE TABLE TYPE (typeID int unsigned NOT NULL, TYPE varchar (45) , PRIMARY KEY

(typeID)) ;

7 CREATE TABLE r o t a t i o n (rotat ionID int unsigned NOT NULL, rotationName varchar

(45) , PRIMARY KEY(rotat ionID)) ;

8 CREATE TABLE cour s e s (courseID int unsigned NOT NULL AUTO INCREMENT,

courseCode varchar (45) , courseNumber int , courseName varchar (45) ,

courseHours int , ro tat ionID int unsigned , prereq1 int unsigned , prereq2

int unsigned , prereq3 int unsigned , coreq int unsigned , PRIMARY KEY(

courseID) , FOREIGN KEY(rotat ionID) REFERENCES r o t a t i o n (rotat ionID) ON

DELETE SET NULL ON UPDATE CASCADE, FOREIGN KEY(prereq1) REFERENCES cour s e s

(courseID) ON DELETE SET NULL ON UPDATE CASCADE, FOREIGN KEY(prereq2)

REFERENCES cour s e s (courseID) ON DELETE SET NULL ON UPDATE CASCADE, FOREIGN

KEY(prereq3) REFERENCES cour s e s (courseID) ON DELETE SET NULL ON UPDATE

CASCADE, FOREIGN KEY(coreq) REFERENCES cour s e s (courseID) ON DELETE SET

NULL ON UPDATE CASCADE) ;

9 CREATE TABLE s t u d e n t s c o u r s e s (studentID int unsigned NOT NULL, courseID int

unsigned NOT NULL, year Year , semesterID int unsigned NOT NULL, grade char

(1) , PRIMARY KEY (studentID , courseID , semesterID) , FOREIGN KEY (courseID)

REFERENCES cour s e s (courseID)ON DELETE CASCADE ON UPDATE CASCADE, FOREIGN

KEY(studentID) REFERENCES students (studentID) ON DELETE CASCADE ON

UPDATE CASCADE, FOREIGN KEY (semesterID) REFERENCES semester (semesterID)

ON DELETE CASCADE ON UPDATE CASCADE) ;

10 CREATE TABLE p l a n s c o u r s e s (planID int unsigned NOT NULL, courseID int

unsigned NOT NULL, typeID int unsigned NOT NULL, PRIMARY KEY (planID ,

courseID , typeID) , FOREIGN KEY (planID) REFERENCES plans (planID)ON DELETE

154

CASCADE ON UPDATE CASCADE, FOREIGN KEY (courseID) REFERENCES cour s e s (

courseID)ON DELETE CASCADE ON UPDATE CASCADE, FOREIGN KEY(typeID)

REFERENCES TYPE (typeID) ON DELETE CASCADE ON UPDATE CASCADE) ;

11 INSERT INTO r o t a t i o n (rotat ionID , rotationName) VALUES (1 , ’ F a l l ’) , (2 , ’

Spr ing ’) , (3 , ’ Both ’) ;

12 INSERT INTO semester (semesterID , semesterName) VALUES (1 , ’ F a l l ’) , (2 , ’

Spr ing ’) ;

13 INSERT INTO TYPE (typeID , TYPE) VALUES (1 , ’ Major ’) , (2 , ’ Core ’) , (3 , ’

E l e c t i v e ’) ;

155

Bibliography

[1] E. C. L.P, “Aligns students, advisors, and institutions to a common goal—on-time graduation.” https:

//www.ellucian.com/solutions/ellucian-degree-works, 2020. accessed September 7, 2020.

[2] C. Systems, “The degree audit system.” https://www.conclusivesystems.com. accessed September

7, 2020.

[3] T. D. S. M. John D Spencer, “Texas common course numbering system.” "https://www.tccns.org/.

accessed September 7, 2020.

[4] A. Offices, “econnect through dallas college.” https://econnect.dcccd.edu/. accessed September 6,

2020.

[5] C. Fruin and J. Grochowski, “Caesked: A class scheduler for wmu students,” Computer Science Senior

Projects, 2010.

[6] D. M. N. J. A. Stuart, T. C. T. S. M. Dascalu, and F. C. Harris Jr, “Software requirements specification

of a university class scheduler.”

[7] “Cybermatrix corporation, inc.,” ”2020 (accessed September 6, 2020)”. accessed September 6, 2020.

[8] T. Müller, “University timetabling.” https://www.unitime.org/. accessed September 6, 2020.

[9] A. B. Adel Alshamrani, “A comparison between three sdlc models waterfall model, spiral model, and

incremental/iterative model,” International Journal of computer science issues., 2015. accessed October

2, 2020.

[10] “The scrum guide.” https://www.scrumguides.org/docs/scrumguide/v2017/

2017-Scrum-Guide-US.pdf. accessed October 2, 2020.

156

https://www.ellucian.com/solutions/ellucian-degree-works
https://www.ellucian.com/solutions/ellucian-degree-works
https://www.conclusivesystems.com
"https://www.tccns.org/
https://econnect.dcccd.edu/
https://www.unitime.org/
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

[11] “Sdlc - waterfall model.” https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm. ac-

cessed October 4, 2020.

[12] “What is extreme programming (xp)?.” https://www.agilealliance.org/glossary/xp/. accessed

October 5, 2020.

[13] C. A. Kent Beck, Extreme Programming Explained: Embrace Change (2nd Edition). Addison-Wesley

Professional, 2 ed., 2004.

[14] I. Sommerville, Software Engineering. Pearson, 10 ed., 2015.

[15] D. Raggett, A. Le Hors, and I. Jacons, “Html 4.01 specification,” HTML 4.0 Specification, vol. W3C

Recommendation, revised on April 24, 1998, no. 4.0, pp. 19–22, revised on 1998.

[16] W. W. W. Consortium, “The degree audit system.” https://www.w3.org/Consortium/. accessed

September 7, 2020.

[17] H. W. Lie, “Cascading html style sheets – a proposal 1994.” https://www.w3.org/People/howcome/

p/cascade.html. accessed September 10, 2020.

[18] c.-c. o. C. Bert Bos, “The css saga, chapter 20, cascading style sheets, designing for the web, by h̊akon

wium lie and bert bos (2nd edition, 1999, addison wesley, isbn 0-201-59625-3).” https://www.w3.org/

Style/LieBos2e/history/. accessed September 18, 2020.

[19] W. W. W. Consortium, “Biography sir tim berners-lee.” https://www.w3.org/People/Berners-Lee/.

accessed September 10, 2020.

[20] “Javascript.” https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript.

accessed September 20, 2020.

[21] Y. D. Liang, Introduction to Java programming : brief version. Pearson, eleventh edition ed., 2018.

[22] “What can php do?.” https://www.php.net/manual/en/intro-whatcando.php. accessed September

21, 2020.

[23] A. Giurca, “Accessing databases with php,” Accessing Databases with PHP, 2005.

[24] “Bradley, angela. ”what is php used for?”.” thoughtco.com/what-is-php-used-for-2694011. ac-

cessed September 21, 2020.

157

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.agilealliance.org/glossary/xp/
https://www.w3.org/Consortium/
https://www.w3.org/People/howcome/p/cascade.html
https://www.w3.org/People/howcome/p/cascade.html
https://www.w3.org/Style/LieBos2e/history/
https://www.w3.org/Style/LieBos2e/history/
https://www.w3.org/People/Berners-Lee/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.php.net/manual/en/intro-whatcando.php
thoughtco.com/what-is-php-used-for-2694011.

[25] “Advantages and disadvantages of php.” https://www.phpbabu.com/

advantages-and-disadvantages-of-php/. accessed September 21, 2020.

[26] P. J. Deitel and H. Dietal, Intro to Python for the computer and data sciences: learning to program with

AI, big data and the cloud. Pearson Education, Inc., first edition ed., 2019.

[27] “Pep 20 – the zen of python.” https://www.python.org/dev/peps/pep-0020/. accessed September

22, 2020.

[28] B. Stroustrup, The C++ programming language. Pearson Education, 2013.

[29] “Ruby on rails.” https://worddisk.com/wiki/Ruby_on_Rails/. accessed September 21, 2020.

[30] “Ruby (programming language).” https://worddisk.com/wiki/Ruby_(programming_language)/. ac-

cessed September 21, 2020.

[31] “Oracle database software downloads.” https://www.oracle.com/database/technologies/

oracle-database-software-downloads.html. accessed October 2, 2020.

[32] “Oracle autonomous database.” https://www.oracle.com/a/ocom/docs/

kuppingercole-autonomous-database-4368706.pdf. accessed October 2, 2020.

[33] “Oracle technology global price list.” https://docs.oracle.com/en/database/oracle/

oracle-database/19/dblic/database-licensing-information-user-manual.pdf. accessed

October 2, 2020.

[34] “Free oracle database for everyone.” https://www.oracle.com/database/technologies/appdev/xe.

html. accessed October 2, 2020.

[35] M. Kofler, The Definitive Guide to MySQL 5. Apress, 2006.

[36] “About sqlite.” https://sqlite.org/about.html. accessed October 4, 2020.

[37] “Microsoft data platform.” https://www.microsoft.com/en-us/sql-server. accessed October 5,

2020.

[38] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User Guide, The (2nd Edition)

(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2005. accessed September

26, 2020.

158

https://www.phpbabu.com/advantages-and-disadvantages-of-php/
https://www.phpbabu.com/advantages-and-disadvantages-of-php/
https://www.python.org/dev/peps/pep-0020/
https://worddisk.com/wiki/Ruby_on_Rails/
https://worddisk.com/wiki/Ruby_(programming_language)/
https://www.oracle.com/database/technologies/oracle-database-software-downloads.html
https://www.oracle.com/database/technologies/oracle-database-software-downloads.html
https://www.oracle.com/a/ocom/docs/kuppingercole-autonomous-database-4368706.pdf
https://www.oracle.com/a/ocom/docs/kuppingercole-autonomous-database-4368706.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/dblic/database-licensing-information-user-manual.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/dblic/database-licensing-information-user-manual.pdf
https://www.oracle.com/database/technologies/appdev/xe.html
https://www.oracle.com/database/technologies/appdev/xe.html
https://sqlite.org/about.html
https://www.microsoft.com/en-us/sql-server

[39] H.-E. Eriksson, M. Penker, B. Lyons, and D. Fado, UML 2 Toolkit. Wiley Publishing, 2003.

[40] J. A. S. Michael Jesse Chonoles, UML 2 for Dummies. For Dummies, 2003.

[41] “Introducing types of uml diagrams.” https://www.lucidchart.com/blog/types-of-UML-diagrams.

accessed September 25, 2020.

[42] “What is composite structure diagram?.” https://www.visual-paradigm.com/guide/

uml-unified-modeling-language/what-is-composite-structure-diagram/. accessed September

27, 2020.

[43] “Uml 2 deployment diagrams: An agile introduction.” https://www.visual-paradigm.com/guide/

uml-unified-modeling-language/what-is-composite-structure-diagram/. accessed September

27, 2020.

[44] “What is package diagram?.” https://www.visual-paradigm.com/guide/

uml-unified-modeling-language/what-is-package-diagram/. accessed September 27, 2020.

[45] “What is profile diagram?.” https://www.visual-paradigm.com/guide/

uml-unified-modeling-language/what-is-profile-diagram/. accessed September 27, 2020.

[46] “Uml class and object diagrams overview.” https://www.uml-diagrams.org/

class-diagrams-overview.html. accessed September 25, 2020.

[47] “Class diagram in uml.” https://learn-it-with-examples.com/it-architecture-management/

it-architecture/uml/class-diagram-uml.html. accessed September 25, 2020.

[48] “Uml class and object diagrams overview.” https://www.uml-diagrams.org/

class-diagrams-overview.html#object-diagram. accessed September 25, 2020.

[49] “Object diagram in uml.” https://learn-it-with-examples.com/it-architecture-management/

it-architecture/uml/object-diagram-uml.html. accessed September 25, 2020.

[50] “Uml component diagrams.” https://www.uml-diagrams.org/component-diagrams.html. accessed

September 25, 2020.

[51] “Component diagram in uml.” https://learn-it-with-examples.com/

it-architecture-management/it-architecture/uml/component-diagram-uml.html. accessed

September 25, 2020.

159

https://www.lucidchart.com/blog/types-of-UML-diagrams
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-composite-structure-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-composite-structure-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-composite-structure-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-composite-structure-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-package-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-package-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-profile-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-profile-diagram/
https://www.uml-diagrams.org/class-diagrams-overview.html
https://www.uml-diagrams.org/class-diagrams-overview.html
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/class-diagram-uml.html
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/class-diagram-uml.html
https://www.uml-diagrams.org/class-diagrams-overview.html#object-diagram
https://www.uml-diagrams.org/class-diagrams-overview.html#object-diagram
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/object-diagram-uml.html
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/object-diagram-uml.html
https://www.uml-diagrams.org/component-diagrams.html
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/component-diagram-uml.html
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/component-diagram-uml.html

[52] “State machine diagrams.” https://www.uml-diagrams.org/state-machine-diagrams.html#

behavioral-state-machine. accessed September 25, 2020.

[53] “State machine (statechart) diagram in uml.” https://learn-it-with-examples.com/

it-architecture-management/it-architecture/uml/state-machine-diagram-uml.html. ac-

cessed September 25, 2020.

[54] “Sequence diagram.” https://sparxsystems.com/enterprise_architect_user_guide/14.0/

model_domains/sequencediagram.html. accessed September 25, 2020.

[55] “Timing diagram.” https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_

domains/timingdiagram.html. accessed September 25, 2020.

[56] “Interaction overview diagram.” https://sparxsystems.com/enterprise_architect_user_guide/

14.0/model_domains/interactionoverviewdiagram.html. accessed September 25, 2020.

[57] I. Sommerville, Software Engineering 10th Edition. Pearson, 2016. accessed October 17, 2020.

[58] “How to create useful software process documentation.” http://westfallteam.com/Papers/Useful_

Software_Process_Documentation.pdf. accessed October 17, 2020.

[59] “Software engineering 9 -chapter 30 documentation.” https://ifs.host.cs.st-andrews.ac.uk/

Books/SE9/WebChapters/PDF/Ch_30%20Documentation.pdf. accessed October 17, 2020.

[60] C. B. Thomas Connolly, Database Systems: A Practical Approach to Design, Implementation, and

Management (6th Edition). Pearson, 2015.

[61] “Untd skyview.” https://www.untdallas.edu/news/caruth-police-institute-approved-provide-able-training-dallas-police-department.

accessed April 17, 2021.

160

https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine
https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/state-machine-diagram-uml.html
https://learn-it-with-examples.com/it-architecture-management/it-architecture/uml/state-machine-diagram-uml.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/sequencediagram.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/sequencediagram.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/timingdiagram.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/timingdiagram.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/interactionoverviewdiagram.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_domains/interactionoverviewdiagram.html
http://westfallteam.com/Papers/Useful_Software_Process_Documentation.pdf
http://westfallteam.com/Papers/Useful_Software_Process_Documentation.pdf
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/PDF/Ch_30%20Documentation.pdf
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/PDF/Ch_30%20Documentation.pdf
https://www.untdallas.edu/news/caruth-police-institute-approved-provide-able-training-dallas-police-department

	Introduction
	Introduction
	Problem Definition
	Motivation
	Project Outline
	Chapters Organization

	Literature Review
	Introduction
	Related Work
	Ellucian Degree Works
	Conclusive Systems Advisor
	Texas Common Course Numbering System
	eConnect through Dallas College (formerly Dallas County Community College)
	CAESked: A Class Scheduler for WMU Students
	Software Requirements Specification of A University Class Scheduler
	CyberMatrix
	UniTime

	Software Development
	The Process Model Used In This Project
	Software Implementation Tools
	Programming Languages
	Database Management Systems
	UML Language

	Summary

	Requirement Specification and System Modeling
	Introduction
	Requirement Engineering Process
	Elicitation
	Analysis
	Defining and Documenting Requirements
	Requirement Specification and Agreement

	Requirements Documentation
	User Requirements
	System Requirements

	Requirement Models
	Summary

	System Design
	Introduction
	Database Design
	Graphical User Interface Design
	System Navigation
	Summary

	Implementation and Testing
	Introduction
	GUI and Explanations
	Testing Scenarios
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Paper Degree Plan Example
	Implementation Code
	Login Page
	Main Page
	Student
	Plans
	Courses
	Plan Courses
	Student Courses
	Reports
	UI Class
	Report Data Class
	Connection Pool Class
	MySQL Database Creation Code

